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1 Introduction
How is monetary policy transmitted domestically and internationally? The standard in-
ternational macroeconomics model with perfect capital mobility and floating exchange
rates (e.g., Gali (2015)) delivers sharp answers. These follow from the Expectations Hy-
pothesis (EH) and the Uncovered Interest Parity (UIP), which hold in the standard model
up to constant risk premia. Because of EH, the yield curve in each country depends only
on expectations of the domestic short rate, which is controlled by the domestic central
bank. Hence, Quantitative Easing or Tightening (QE/QT) by the central bank, keeping
short rates unchanged, has no effect on the yield curve. Moreover, each country’s yield
curve is fully insulated from other countries’ monetary policy. Insulation arises because
according to UIP, short-rate differentials across countries are absorbed into the exchange
rate, whose expected movements compensate investors for these differentials. The insu-
lation result is a slightly broader statement of the well-known Friedman-Obstfeld-Taylor
Trilemma: with perfect capital mobility, a floating exchange rate provides monetary au-
tonomy not just in setting short rates but also in shaping the entire yield curve.1

Four broad empirical observations cast doubt on the validity of the standard model.
First, a large literature starting with Bilson (1981) and Fama (1984) documents strong
violations of UIP: currency carry trade (CCT) strategies that borrow in currencies with
low short rates and invest in currencies with high short rates earn abnormally high ex-
pected returns. Second, a similarly large literature starting with Fama and Bliss (1987)
and Campbell and Shiller (1991) documents strong violations of EH: bond carry trade
(BCT) strategies that borrow in maturities with low interest rates and invest in maturi-
ties with high interest rates earn abnormally high expected returns. Third, risk premia
in currencies and bonds are connected. For example, Chen and Tsang (2013), Lloyd and
Marin (2020) and Chernov and Creal (2021) find that yield curve slope differentials pre-
dict the CCT’s profitability, and Lustig, Stathopoulos, and Verdelhan (2019) find that
the CCT’s profitability declines when that trade is carried out with long-maturity rather
than short-maturity bonds.2 Fourth, a growing body of evidence surveyed in Bhattarai
and Neely (2022) suggests that central banks’ QE purchases had a significant impact not
only on domestic yields but also on exchange rates and foreign yields.3

In this paper we develop a two-country model in which currency and bond markets are
populated by different investor clienteles, and segmentation is partly overcome by global
arbitrageurs with limited capital. We show that the combination of limited arbitrage

1Obstfeld, Shambaugh, and Taylor (2010) provide a modern articulation of the Trilemma.
2See Clarida and Taylor (1997) and Berge, Jorda, and Taylor (2010) for related evidence that the

home and foreign yield-curve factors predict the CCT’s profitability, and Chernov and Dahlquist (2023)
for a literature survey on currency risk premia emphasizing their connection with bond risk premia.

3See also Bauer and Neely (2014), Neely (2015), Curcuru, De Pooter, and Eckerd (2018), Fratzscher,
Lo Duca, and Straub (2018), Dedola, Georgiadis, Grab, and Mehl (2021), Curcuru, Kamin, Li, and
Rodriguez (2023) and Georgiadis and Jarocinski (2023).
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and price-elastic clienteles gives rise to the empirically documented violations of UIP and
EH, and to the ways in which the violations are connected. The resulting risk premia in
currency and bond markets, which are time-varying and connected, play a key role in the
transmission of monetary policy. It is through changes in risk premia in both markets that
QE purchases lower domestic and foreign bond yields and depreciate the currency, and
that short-rate cuts lower foreign bond yields. These effects are absent from the standard
model, in which risk premia are constant.

The connections between currency and bond risk premia that arise in our model are
consistent with the low empirical correlation between currency and long-maturity bond
returns. In our estimated model, movements in the exchange rate are almost uncorrelated
with movements in long-maturity bond yields, and yet the currency market is instrumental
in transmitting bond demand shocks across countries. In particular, the effects of QE/QT
on foreign bond yields are sizeable, and stronger than those of conventional policy. At
the same time, because of the disconnect between the exchange rate and bond yields, the
transmission of QE/QT to the exchange rate is weaker, and foreign exchange interventions
by central banks have strong effects on the exchange rate but weak effects on bond yields.

Our model, presented in Section 2, is set in continuous time and infinite horizon. In
each of the two countries, home and foreign, a central bank sets the short rate exogenously.
There are three types of agents: currency traders, bond investors, and global arbitrageurs.
Currency traders express a demand for foreign assets. Bond investors form clienteles, each
of which expresses a demand for a bond of a specific country and maturity. Currency
traders’ demand can depend on the real exchange rate, and bond investors’ demand can
depend on bond prices. Both types of demands are exogenous and subject to shocks: a
currency demand factor shifts the demand of currency traders and a bond demand factor
in each country shifts the demand of that country’s bond investors. Examples of currency
traders are households switching expenditure between home and foreign goods. Examples
of bond clienteles are pension funds and insurance companies.

The existence of currency traders and bond investors introduces segmentation across
asset classes and maturities. Segmentation is partly overcome by global arbitrageurs, who
trade the currency and bonds of both countries. Arbitrageurs maximize mean-variance
utility over instantaneous changes in wealth. Their risk aversion parameter can capture
in reduced form capital or Value-at-Risk constraints. Examples of global arbitrageurs are
macro hedge funds and global banks.

Section 3 characterizes the equilibrium as a solution to a scalar non-linear system.
The exchange rate and bond prices are log affine functions of five stochastic factors: the
two short rates, the currency demand factor, and the two bond demand factors. When
arbitrageur risk aversion is zero, UIP and EH hold, and monetary policy transmission is
as in the standard model.

Section 4 specializes the model to the case where short rates are the only stochastic
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factors and are independent across countries. In that case, we can show key mechanisms
and results analytically. Consider the transmission of conventional monetary policy. Fol-
lowing a cut to the home short rate, arbitrageurs find it attractive to enter into the CCT,
by borrowing in the home currency and investing in the foreign currency. If the demand
by currency traders is price-elastic, then arbitrageurs’ holdings of foreign currency rise in
equilibrium. The expected return of the CCT rises as well, as arbitrageurs must be com-
pensated for the risk of entering into that trade. The rise in the CCT’s expected return
attenuates the transmission of monetary policy to the exchange rate, which appreciates
less than implied by UIP. This attenuation effect parallels Gabaix and Maggiori (2015),
who model exchange-rate dynamics without a yield curve.

A similar attenuation effect arises in the home bond market. The short-rate cut
prompts arbitrageurs to also enter into the home BCT, by borrowing in the home short
rate and investing in long-maturity home bonds. If the demand by home bond investors
is price-elastic, then arbitrageurs’ holdings of home bonds rise in equilibrium and so does
the expected return of the home BCT. The rise in the BCT’s expected return attenuates
the transmission of monetary policy to domestic bond yields, which drop less than implied
by EH. This attenuation effect parallels Vayanos and Vila (2021), who model yield-curve
dynamics in a closed economy.

In addition to the above attenuation effects, we show a propagation effect of con-
ventional policy to foreign bond yields. Propagation occurs because of hedging by arbi-
trageurs. By entering into the CCT in response to the home short-rate cut, arbitrageurs
become more exposed to the risk that the foreign short rate drops and the foreign currency
depreciates. Foreign bonds provide a natural hedge for that risk because their price rises
when the foreign short rate drops. Hence, arbitrageurs increase their demand for foreign
bonds, causing foreign bond yields to drop.

Consider next the transmission of unconventional monetary policy. Following QE
purchases of home bonds, their prices rise. Arbitrageurs accommodate the increased
demand for home bonds by holding fewer such bonds. This renders them less exposed to
a rise in the home short rate and more willing to hold foreign currency, which depreciates
when the home short rate rises. Arbitrageurs also become more willing to hold foreign
bonds, which hedge the foreign currency position against a drop in the foreign short rate.
Hence, QE purchases depreciate the home currency and lower foreign bond yields. A
similar argument implies that sterilized purchases of foreign currency by the home or
foreign central bank lower home bond yields and raise foreign ones.

Section 5 solves the full model and quantifies its effects. The model parameters are
estimated from data on the US and the Eurozone, using maximum likelihood. Demand
shocks generate a disconnect between the exchange rate and long-maturity bond yields,
but not between home and foreign bond yields. Variance decompositions within our
estimated model reveal that a country’s long-maturity bond yields move primarily because
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of the bond demand factors in both countries. Short rates account for a small fraction of
movements in long-maturity yields, and the currency demand factor for an even smaller
one. Conversely, the currency demand factor is the exchange rate’s primary driver. Short
rates account for a small fraction of exchange-rate movements, and the bond demand
factors for an even smaller one.

The result that long-maturity bond yields are connected across countries despite their
disconnect with the exchange rate can seem puzzling. This is because Section 4 shows
that shocks to bond demand in one country are transmitted to bond yields in the other
through the hedging of arbitrageurs’ bond positions in the currency market. In Section 4,
the exchange rate and bond yields move only because of the short rates, and bond yields
comove positively across countries. Introducing the bond demand factors strengthens
the comovement between home and foreign yields—even though the factors themselves
are independent across countries. This is because bond demand shocks in one country
move yields in both countries in the same direction. On the other hand, the comovement
between bond yields and the exchange rate is unaffected because bond demand shocks
in the two countries move the exchange rate in opposite directions. As a result, the
exchange rate is connected weakly to long-maturity bond yields and strongly to the short
rates. Introducing the currency demand factor weakens the latter connection as well.
Because currency demand shocks generate opposite movements in home and foreign bond
yields, as shown in Section 4, they weaken the strong positive comovement between long-
maturity bond yields across countries, but they do not undo it. As a result, our model
features simultaneously positive comovement in bond yields across countries, transmission
of bond demand shocks through the currency market, and exchange-rate disconnect.

Our estimated model matches closely the violations of UIP and EH found in the
literature and the ways in which the violations are connected. It also generates sharp
implications on the effects of monetary policy and foreign exchange interventions. These
follow from the exchange-rate disconnect and from the strong positive comovement be-
tween bond yields across countries.

Our paper is part of a recent literature that emphasizes the role of segmented mar-
kets, financial intermediaries and limits of arbitrage for macroeconomics. In Gabaix and
Maggiori (2015), households in each of two countries can only invest in a domestic bond,
while intermediaries can invest in the bonds of both countries. Because intermediary po-
sitions are constrained, UIP fails to hold, and the exchange rate is influenced by financial
flows as in an earlier literature on portfolio balance (e.g., Kouri (1976) and Driskill and
McCafferty (1980)). In Itskhoki and Mukhin (2021), the exchange rate is determined by
households who can only invest in a domestic bond, risk-averse intermediaries who can
overcome this segmentation, and noise traders. Shocks to noise-trader demand generate
UIP deviations, and account for more than 90% of exchange rate fluctuations but for
only a small fraction of output fluctuations. In Kekre and Lenel (2024), the exchange
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rate correlates more highly with output because of demand shocks that shift households’
discount rates. Other frictional models of exchange rates with financial flows and noise
traders include Jeanne and Rose (2002), Evans and Lyons (2002), Hau and Rey (2006),
Bacchetta and van Wincoop (2010, 2021) and Bruno and Shin (2015). These papers focus
on the determination of the exchange rate and do not model yield curve frictions.

Vayanos and Vila (2021, VV) develop a closed-economy model of the yield curve
with preferred-habitat investors who can invest in specific maturities and risk-averse ar-
bitrageurs. Our model extends VV to two countries, adds the currency market, and
assumes global arbitrageurs. Ray (2019) and Ray, Droste, and Gorodnichenko (2024)
embed VV into a New Keynesian model and study the transmission of conventional and
unconventional monetary policy to the domestic economy. Closest to our work is Green-
wood, Hanson, Stein, and Sunderam (2023), who develop independently a discrete-time
model of currency and bond markets with preferred-habitat investors, global arbitrageurs,
and only two bond maturities. They derive results analogous to those that we present
in Section 4 and explore additionally Covered Interest Parity violations and arbitrageur
heterogeneity, but do not estimate their model or quantify its effects.

Our paper is also related to a recent literature that examines how convenience yields
affect exchange rates and interest rates. Jiang, Krishnamurthy, and Lustig (2021) and
Engel and Wu (2022) construct convenience yields by comparing home government bonds
to synthetic counterparts constructed by buying foreign government bonds and swapping
the foreign into the home currency. They find that the home currency appreciates when
the home convenience yield rises. Devereux, Engel, and Wu (2023) and Jiang, Krishna-
murthy, and Lustig (2024) show that investor preferences for safe dollar assets underlie
the global financial cycle (Rey, 2013) whereby US monetary policy transmits to the rest
of the world. Our model can capture investor preferences for currencies and bonds of a
specific country through the demand factors, and can quantify the effects of each type of
demand.

Finally, our paper is related to DSGE models of monetary policy transmission. Closest
to our work is the two-country model of Alpanda and Kabaca (2020). They find that QE
purchases have large international spillover effects, which exceed those of conventional
monetary policy. Portfolio balance effects in their model arise from bond holdings entering
directly in agents’ utility functions, while we partly endogenize them through mean-
variance optimization by arbitrageurs.4

4See also Andres, Lopez-Salido, and Nelson (2004) and Chen, Curdia, and Ferrero (2012), for closed-
economy DSGE models of QE in which agents face transaction costs and position limits when trading
bonds.
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2 Model
Time is continuous and goes from zero to infinity. There are two countries, home (H) and
foreign (F ). We define the exchange rate as the units of home currency that one unit of
foreign currency can buy, and denote it by et at time t. An increase in et corresponds to
a foreign currency appreciation.

In each country j = H,F , a continuum of zero-coupon government bonds can be
traded. The bonds’ maturities lie in an interval (0, T ). The country-j bond with maturity
τ at time t pays off one unit of country j’s currency at time t + τ . We denote by P

(τ)
jt

the time-t price of that bond, expressed in units of country j’s currency, and by y
(τ)
jt the

bond’s yield. The yield is the spot rate for maturity τ , and is related to the price through

y
(τ)
jt = −

log
(
P

(τ)
jt

)
τ

. (2.1)

The country-j and time-t short rate ijt is the limit of the yield y
(τ)
jt when τ goes to zero.

We take ijt as exogenous, and describe its dynamics later in this section (Equation (2.7)).
An exogenous ijt can be interpreted as the result of actions that the central bank in
country j takes when targeting the short nominal rate by elastically supplying liquidity.

There are three types of agents: arbitrageurs, currency traders, and bond investors.
Arbitrageurs are competitive and maximize a mean-variance objective over instantaneous
changes in wealth. For tractability, we express the wealth of all arbitrageurs in units of
the home currency, thus assuming that the home currency is the riskless asset for them.
Assuming that for some arbitrageurs the foreign currency is the riskless asset renders our
model nonlinear, but its linearized version remains the same.

We allow arbitrage to be global or segmented. When arbitrage is global, arbitrageurs
can invest in the currency and bonds of both countries. When instead arbitrage is seg-
mented, arbitrageurs can invest in the currency of the home country (the riskless asset),
and in a single additional asset class: foreign currency for some arbitrageurs, home bonds
for others, and foreign bonds financed by borrowing in foreign currency for the remainder.
We use segmented arbitrage as a benchmark for our analysis of global arbitrage.

In the case of global arbitrage, we denote by Wt the arbitrageurs’ time-t wealth, by
WFt their position in foreign assets and by X

(τ)
Ht dτ and X

(τ)
Ft dτ their position in the home

and foreign bonds with maturities in [τ, τ + dτ ], respectively, all expressed in units of the
home currency. The arbitrageurs’ budget constraint is

dWt = WtiHtdt+WFt

(
det
et

+ (iFt − iHt)dt

)
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+

∫ T

0

X
(τ)
Ht

(
dP

(τ)
Ht

P
(τ)
Ht

− iHtdt

)
dτ +

∫ T

0

X
(τ)
Ft

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et

− iFtdt

)
dτ. (2.2)

If arbitrageurs invest all their wealth in the home short rate, then the instantaneous
change dWt in their wealth is WtiHtdt, the first term in (2.2). Arbitrageurs can earn
incremental returns relative to that case by investing in foreign currency, home bonds,
and foreign bonds. The currency return derives from the CCT, which borrows short term
in the home country and invests short term in the foreign country. The CCT’s return
corresponds to the second term in (2.2) and is det

et
+ (iFt − iHt)dt, equal to the return on

foreign currency plus that on the foreign-home short-rate differential. The home bond
return derives from the home BCT, which borrows short-term in the home country and
invests in home bonds. The home BCT’s return corresponds to the third term in (2.2)
and is dP

(τ)
Ht

P
(τ)
Ht

− iHtdt, equal to the return on the home bond with maturity τ minus that
on the home short rate. The foreign bond return is incremental relative to investing
in foreign currency. It derives from the foreign BCT, which borrows short-term in the
foreign country and invests in foreign bonds. The foreign BCT’s return corresponds to
the fourth term in (2.2) and is d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et

− iFtdt, equal to the return on the foreign
bond with maturity τ minus that on the foreign short rate, with both returns expressed
in home-currency terms.

The optimization problem of a global arbitrageur is

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

[
Et(dWt)−

a

2
Vart(dWt)

]
. (2.3)

The coefficient a ≥ 0 characterizes the arbitrageur’s risk aversion. It can capture in
reduced form capital or Value-at-Risk constraints. By possibly redefining a, we assume
that global arbitrageurs are in measure one.

In the case of segmented arbitrage, an arbitrageur’s budget constraint is derived from
(2.2) and optimization problem is derived from (2.3) by setting some of the investments
to zero. For example, for an arbitrageur who can invest only in foreign currency we set
the investments X

(τ)
Ht and X

(τ)
Ft to zero and optimize only over WFt. We denote by ae,

aH , and aF , respectively, the risk-aversion coefficient of an arbitrageur who can invest in
foreign currency, home bonds, and foreign bonds. By possibly redefining (ae, aH , aF ), we
assume that each type of arbitrageur is in measure one.

Currency traders generate a downward-sloping demand for foreign assets as a function
of the exchange rate et, as in Hau and Rey (2006). We assume that this demand, expressed
in units of the home currency, is affine and decreasing in the logarithm of the exchange
rate:

Zet = −αe log(et)− (ζet + θeγt), (2.4)
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where αe ≥ 0 is a slope coefficient that remains constant over time t, and ζet + θeγt is
an intercept coefficient. The intercept coefficient is the sum of a term ζet that depends
deterministically on t and of a constant θe times a currency demand factor γt that depends
stochastically on t. We describe the dynamics of ζet and γt later in this section. With
a slight abuse of language, we refer to αe and ζet + θeγt as demand slope and demand
intercept, respectively.

Currency traders can be interpreted as households or as central banks. For example,
when et is low, the flow demand for foreign goods arising from home and foreign households
may increase because of expenditure switching, and this may push up the net worth of
foreign households, which is invested in foreign assets as in Gabaix and Maggiori (2015).
Alternatively, when et is low, the central bank in the home country may want to increase its
stock of foreign currency, perhaps to stabilize the currency. In ongoing work (Gourinchas,
Ray, and Vayanos (2024, GRV1)), we endogenize the demand of currency traders in a two-
country New Keynesian model in which currency and bond markets are segmented for
households and are partly integrated by arbitrageurs with limited capital. The currency
traders in GRV1 are the households and their demand is downward-sloping because of
expenditure switching. The endogenous demand of currency traders in GRV1 incorporates
two mechanisms not present in (2.4). First, changes to et affect the trade balance and
hence the change in foreign assets, but move the stock of foreign assets only gradually.
Second, monetary policy redistributes wealth across countries because it generates capital
gains or losses for arbitrageurs which are distributed back to households. We assume away
these mechanisms in (2.4) for tractability. These mechanisms can affect the response of
the CCT and BCTs to monetary policy, working alongside the mechanisms that we derive
in this paper.

Bond investors form clienteles, each of which has a preference (“habitat”) for a bond
of a specific country and maturity. Examples of clienteles are pension funds and insurance
companies, which prefer long-maturity bonds in their country because these match their
pension liabilities, which are long term and denominated in their country’s currency. We
denote the demand of bond investors for bonds of country j with maturities in [τ, τ +dτ ],
expressed in units of the home currency, by Z

(τ)
jt dτ . Following Vayanos and Vila (2021),

we assume that Z
(τ)
jt is affine and decreasing in the logarithm of the bond price:

Z
(τ)
jt = −αj(τ) log

(
P

(τ)
jt

)
− β

(τ)
jt , (2.5)

where αj(τ) ≥ 0 is a slope coefficient that remains constant over time t but can depend
on country j and maturity τ , and β

(τ)
jt is an intercept coefficient. The intercept coefficient

is

β
(τ)
jt = ζj(τ) + θj(τ)βjt, (2.6)
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where (ζj(τ), θj(τ)) are independent of t but can depend on j and τ , and βjt is a bond
demand factor in country j that depends stochastically on t, depends on j and is inde-
pendent of τ . With a slight abuse of language, we refer to αj(τ) and β

(τ)
jt as demand slope

and demand intercept, respectively.
The 5× 1 vector qt ≡ (iHt, iFt, γt, βHt, βFt)

⊤ follows the process

dqt = Γ(q̄ − qt)dt+ ΣdBt, (2.7)

where q̄ is a constant 5 × 1 vector, (Γ,Σ) are constant 5 × 5 matrices, Bt is a 5 × 1

vector (BiHt, BiF t, Bγt, BβHt, BβFt)
⊤ of independent Brownian motions, and ⊤ denotes

transpose. Equation (2.7) nests the case where the factors (iHt, iFt, γt, βHt, βFt) are mutu-
ally independent, and the case where they are correlated. Independence arises when the
matrices (Γ,Σ) are diagonal. When instead Σ is non-diagonal, shocks to the factors are
correlated, and when Γ is non-diagonal, the drift (instantaneous expected change) of each
factor depends on all other factors. We assume that the eigenvalues of Γ have positive real
parts so that qt is stationary. Equation (2.7) implies that the long-run mean of a station-
ary qt is q̄. We set the long-run means of the demand factors to zero (q̄3 = q̄4 = q̄5 = 0).
This is without loss of generality because we can redefine ζet and {ζj(τ)}j=H,F to include
a non-zero long-run mean. We set the supply of foreign assets and of home and foreign
bonds to zero by redefining investor demand to be net of supply.

We express all demand functions in units of the home currency, which we assume is
the riskless asset for arbitrageurs, for tractability. Expressing some demand functions in
the foreign currency renders our model nonlinear, but its linearized version remains the
same.

While we model the demand for foreign assets, home bonds, and foreign bonds as
corresponding to different risk factors, these demands can be correlated. For example,
suppose that some currency traders trade foreign-currency forwards and swaps. We show
in Appendix A that under global arbitrage, Covered Interest Parity (CIP) holds, and an
increase in the demand for foreign-currency forwards and swaps translates into an equal
increase in the demand for foreign assets and foreign bonds, and an equal decrease in
the demand for home bonds. Our model can capture correlated demands through the
matrices Γ and Σ. From now on, we use the terms foreign assets and foreign currency
interchangeably.

Our model can be given both a nominal and a real interpretation. Under the nominal
interpretation, emphasized so far, the exchange rate is the price of one currency relative
to the other and bonds pay in currency units. Under the real interpretation, the exchange
rate et is the real exchange rate defined as the price of goods in one country relative to
the other and bonds pay in units of goods.

A difficulty with the nominal interpretation is that the demand of currency traders is
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better viewed as a function of the real, rather than the nominal, exchange rate. To make
the nominal interpretation compatible with a real currency demand, we can replace the
nominal exchange rate et in (3.1) by the real exchange rate. This amounts to keeping et

inside the logarithm and adding αe(log(pFt)− log(pHt)) to ζet, where pjt is the price level
in country j = H,F . In subsequent sections we present the nominal interpretation of
our model allowing for a real currency demand and restricting inflation to be constant in
each country: ζet = ζe + αe(πF − πH)t, where πj is the constant inflation rate in country
j and ζe is a constant. In GRV1 we extend our analysis so that inflation is stochastic and
determined endogenously within a New Keynesian model.

3 Equilibrium
In this section we characterize the equilibrium with global arbitrage. We start by con-
jecturing that the equilibrium exchange rate and bond yields are log-affine functions of
qt. That is, there exist six scalars ({Aije}j=H,F , Aγe, {Aβje}j=H,F , Ce) and twelve functions
({Aijj′(τ)}j,j′=H,F , {Aγj(τ)}j=H,F , {Aβjj′(τ)}j,j′=H,F , {Cj(τ)}j=H,F ) that depend only on τ ,
such that

log et = −
[
A⊤

e qt + Ce + (πF − πH)t
]
, (3.1)

logP
(τ)
jt = −

[
Aj(τ)

⊤qt + Cj(τ)
]
, (3.2)

where Ae ≡ (AiHe,−AiFe, Aγe, AβHe,−AβFe)
⊤ and Aj(τ) ≡ (AiHj(τ), AiF j(τ), Aγj(τ),

AβHj(τ), AβFj(τ))
⊤. Applying Ito’s Lemma to (3.1) and using (2.7), we find

det
et

= µetdt− A⊤
e ΣdBt, (3.3)

where

µet ≡ A⊤
e Γ(qt − q̄)− (πF − πH) +

1

2
A⊤

e ΣΣ
⊤Ae. (3.4)

Likewise, applying Ito’s Lemma to (3.2) for j = H,F , using (2.7), and additionally using
(3.1) in the case j = F , we find

dP
(τ)
Ht

P
(τ)
Ht

= µ
(τ)
Htdt− AH(τ)

⊤ΣdBt, (3.5)

d(P
(τ)
Ft et)

P
(τ)
Ft et

− det
et

= µ
(τ)
Ft dt− AF (τ)

⊤ΣdBt, (3.6)
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where

µ
(τ)
Ht ≡ A′

H(τ)
⊤qt + C ′

H(τ) + AH(τ)
⊤Γ(qt − q̄) +

1

2
AH(τ)

⊤ΣΣ⊤AH(τ), (3.7)

µ
(τ)
Ft ≡ A′

F (τ)
⊤qt + C ′

F (τ) + AF (τ)
⊤Γ(qt − q̄) +

1

2
AF (τ)

⊤ΣΣ⊤ (AF (τ) + 2Ae) . (3.8)

We next derive the arbitrageurs’ first-order conditions. Substituting (3.3), (3.5) and
(3.6) into the budget constraint (2.2), we can write the optimization problem (2.3) as

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

[
WFt (µet + iFt − iHt) +

∑
j=H,F

∫ T

0

X
(τ)
jt

(
µ
(τ)
jt − ijt

)
dτ

−a

2

(
WFtAe +

∑
j=H,F

∫ T

0

X
(τ)
jt Aj(τ)dτ

)⊤

ΣΣ⊤

(
WFtAe +

∑
j=H,F

∫ T

0

X
(τ)
jt Aj(τ)dτ

) .

(3.9)

The first-order condition with respect to WFt is

µet + iFt − iHt = A⊤
e λt, (3.10)

and the first-order condition with respect to X
(τ)
jt is

µ
(τ)
jt − ijt = Aj(τ)

⊤λt, (3.11)

where j = H,F and the vector λt ≡ (λiHt, λiF t, λβHt, λβFt, λγt)
⊤ of the prices of the risk

factors is

λt = aΣΣ⊤

(
WFtAe +

∑
j=H,F

∫ T

0

X
(τ)
jt Aj(τ)dτ

)
. (3.12)

The first-order condition (3.10) describes the arbitrageurs’ risk-return trade-off when
investing in the CCT. If arbitrageurs invest an extra unit of home currency in the CCT,
then their expected return increases by µet + iFt − iHt, the left-hand side of (3.10). The
right-hand side of (3.10) is the increase in the arbitrageurs’ portfolio risk, times their risk-
aversion coefficient a. The increase in portfolio risk is equal to the covariance between the
return on the CCT and the return on the arbitrageurs’ portfolio. That covariance is the
product of the vectors that describe the sensitivity of each return to the risk factors, times
the factors’ covariance matrix ΣΣ⊤. The sensitivity of the CCT’s return to the factors is
Ae, and the sensitivity of the portfolio return is WFtAe +

∑
j=H,F

∫ T

0
X

(τ)
jt Aj(τ)dτ .

The first-order condition (3.11) describes the arbitrageurs’ risk-return trade-off when
investing in the BCT in country j. If arbitrageurs invest an extra unit of home currency in
the BCT for country j and maturity τ , then their expected return increases by µ

(τ)
jt −ijt, the
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left-hand side of (3.11). The right-hand side of (3.11) is the increase in the arbitrageurs’
portfolio risk, times their risk-aversion coefficient a. The increase in portfolio risk is equal
to the covariance between the return on the BCT in country j and for maturity τ , and
the return on the arbitrageurs’ portfolio.

We next combine the first-order conditions with market clearing. Clearing in the
currency market requires

WFt + Zet = 0. (3.13)

Clearing in the market for country j bonds with maturity τ requires

X
(τ)
jt + Z

(τ)
jt = 0. (3.14)

Using (3.13) and (3.14), we can write λt as

λt = aΣΣ⊤

(
−ZetAe −

∑
j=H,F

∫ T

0

Z
(τ)
jt Aj(τ)dτ

)
. (3.15)

Substituting the demands Zet and {Z(τ)
jt }j=H,F from (2.4) and (2.5), respectively, and

using (3.1) and (3.2), we can write (3.15) as

λt = aΣΣ⊤

((
ζe + θeγt − αe

(
A⊤

e qt + Ce

))
Ae

+
∑

j=H,F

∫ T

0

(
ζj(τ) + θj(τ)βjt − αj(τ)

(
Aj(τ)

⊤qt + Cj(τ)
))

Aj(τ)dτ

)
. (3.16)

Substituting λt from (3.16) and µet from (3.4) into (3.10), we find an equation that is
affine in qt. We find two additional affine equations by substituting λt from (3.16), µ(τ)

Ht

from (3.7) and µ
(τ)
Ft from (3.8) into (3.10) for j = H,F . Identifying linear and constant

terms yields a system of scalar equations and ordinary differential equations (ODEs).
That system reduces to one of 25 nonlinear scalar equations, as shown in Proposition
B.1. Proposition B.1 is stated and proved in Appendix B, which contains the proofs of
all results in Sections 3 and 4.

Our model yields Uncovered Interest Parity (UIP) and the Expectations Hypothesis
(EH) as a special case. Both properties hold when arbitrageurs are risk-neutral (a = 0).
Setting a = 0 in (3.10) yields µet = iHt − iFt, as under UIP. Setting a = 0 in (3.11) yields
µ
(τ)
jt ≡ ijt, as under EH. An additional equation that must hold when a = 0, as shown in

Proposition B.1, is

iH − πH = iF − πF +
1

2
(EiH − EiF )

⊤ Γ−1ΣΣ⊤ (Γ−1
)⊤

(EiH − EiF ) , (3.17)
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where ij denotes the unconditional mean of the nominal short rate in country j and
(EiH ,EiF ) denote the first two columns of the 5× 5 identity matrix. According to (3.17),
the unconditional mean ij − πj of the real interest rate in country j must be equal across
home and foreign, up to a convexity adjustment (the last term in (3.17)). Equality of
average real rates is a restriction on model parameters. It must hold for a = 0 because of
the stationarity of the real exchange rate, which is implicit in the conjectured form (3.1).
Indeed, if average real rates differed across countries and arbitrageurs were risk-neutral,
then the real exchange rate would appreciate on average or depreciate on average forever,
violating stationarity.

When arbitrageurs are risk-averse, a stationary equilibrium can exist even when av-
erage real rates differ across countries and even in the limit when risk aversion goes to
zero. This is because any difference in average real rates is absorbed in equilibrium by an
adjustment in currency risk premia. The currency of the country with a higher average
real rate is permanently stronger and earns a positive premium. Arbitrageurs have a
high demand for that currency, through their position in the CCT, and earn the positive
premium. Currency traders have offsetting low demand if their demand is price-elastic
(αe > 0). In the limit when arbitrageurs’ risk aversion a goes to zero, risk premia remain
non-zero and arbitrageurs’ position in the CCT becomes arbitrarily large. Corollary B.1
in Appendix B summarizes these results.

4 No Demand Risk
In this section we study the case where the demand for foreign currency, home bonds,
and foreign bonds does not vary stochastically: the demand factors (γt, βHt, βFt) have zero
variance and are equal to their long-run mean of zero. For simplicity we also assume that
the home and foreign short rates (iHt, iFt) are independent and that one-off shocks to the
demand factors do not affect the short rates or other demand factors. Our assumptions
amount to taking the matrices (Γ,Σ) in (2.7) to be diagonal and to setting Σ3,3 = Σ4,4 =

Σ5,5 = 0. Setting (Γ1,1,Γ2,2, q̄1, q̄2,Σ1,1,Σ2,2) ≡ (κiH , κiF , iH , iF , σiH , σiF ), we can write the
dynamics of the country-j short rate as

dijt = κij(ij − ijt)dt+ σijdBijt. (4.1)

The simplifying assumptions in this section allow us to study the equilibrium analytically.

4.1 Segmented Arbitrage

When arbitrage is segmented, the first-order condition of the arbitrageurs in each mar-
ket reflects their own risk aversion and portfolio composition. Because arbitrageurs in
currency and bond markets hold different portfolios, the prices of the risk factors differ
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across these markets. Solving for equilibrium in the currency market reduces to solving a
nonlinear scalar equation, as shown in Proposition B.2 in Appendix B. The same is true
for equilibrium in the country-j bond market, as shown in Proposition B.3 in Appendix
B. Using our characterization of equilibrium, we next derive equilibrium properties.

4.1.1 Short-Rate Shocks and Carry Trades

Proposition 4.1. Suppose that arbitrage is segmented. Following a drop in the home
short rate or a rise in the foreign short rate, the foreign currency appreciates (AiHe > 0,
AiFe > 0). When additionally currency arbitrageurs are risk-averse (ae > 0) and the
demand of currency traders is price-elastic (αe > 0),

• The foreign currency does not appreciate all the way to the level implied by UIP:
AiHe < AUIP

iHe ≡ 1
κiH

, AiFe < AUIP
iFe ≡ 1

κiF
.

• The expected return of the CCT rises: ∂(µet+iFt−iHt)
∂iHt

< 0 and ∂(µet+iFt−iHt)
∂iFt

> 0.

When the home short rate drops or the foreign short rate rises, the foreign currency
appreciates. These movements are in the direction implied by UIP. The foreign currency
does not appreciate all the way to the value implied by UIP, however. Intuitively, a
drop in iHt or a rise in iFt render the CCT more profitable, raising its expected return
µet + iFt − iHt and inciting currency arbitrageurs to increase their holdings WFt of the
foreign currency. This puts upward pressure on the exchange rate. When the demand
of currency traders is price-elastic, their holdings Zet decrease as the foreign currency
appreciates and those of currency arbitrageurs WFt increase in equilibrium. Risk-averse
arbitrageurs, however, do not trade all the way to the point where et reaches its UIP value.
Instead, in a spirit similar to Gabaix and Maggiori (2015), the CCT’s expected return
µet + iFt − iHt remains higher than before the shock to compensate arbitrageurs for the
risk generated by their larger foreign-currency position. The exchange rate adjusts all the
way to its UIP value when currency arbitrageurs are risk-neutral or when the demand of
currency traders is price-inelastic. In the latter case this is because arbitrageurs’ activity
causes prices to rise up to the point where there is no change in WFt.

Proposition 4.1 implies that the difference between the foreign and the home short rate
predicts positively the CCT’s future return. This is consistent with the findings of Bilson
(1981) and Fama (1984) that following an increase in the foreign-minus-home short-rate
differential, the expected return on the foreign currency typically increases.

Proposition 4.2. Suppose that arbitrage is segmented. Following a drop in the short rate
in country j, bond yields drop in that country (Aijj(τ) > 0) and do not change in the
other country (Aij′j(τ) = 0 for j′ ̸= j). When additionally bond arbitrageurs in country j

are risk-averse (aj > 0) and the demand of bond investors in that country is price-elastic
(αj(τ) > 0):

14



• Bond yields do not drop all the way to the value implied by the EH: Aijj(τ) <

AEH
ijj (τ) ≡ 1−e−κijτ

κij
.

• The expected return of the BCT rises:
∂
(
µ
(τ)
jt −ijt

)
∂ijt

< 0.

When the short rate in country j drops, bond prices in that country rise (and bond
yields drop) because of a standard discounting effect. Prices do not rise all the way to
the value implied by the EH, however. Intuitively, a drop in the short rate renders the
BCT in country j more profitable, raising its expected return µ

(τ)
jt − ijt and inciting bond

arbitrageurs in country j to increase their bond holdings X(τ)
jt . This puts upward pressure

on bond prices P (τ)
jt . When the demand of bond investors in country j is price-elastic, their

holdings Z
(τ)
jt decrease as bond prices rise and those of bond arbitrageurs X

(τ)
jt increase

in equilibrium. Risk-averse arbitrageurs, however, do not trade all the way to the point
where bond prices reach their EH value. Instead, as Vayanos and Vila (2021) show for
a closed economy, the BCT’s expected return µ

(τ)
jt − ijt remains higher than before the

shock to compensate arbitrageurs for the risk generated by their larger bond position.
Bond prices adjust all the way to their EH value when bond arbitrageurs in country j are
risk-neutral or when the demand of bond investors in country j is price-inelastic.

Proposition 4.2 implies that the slope of the term structure in country j predicts pos-
itively the BCT’s future return in that country. This is because both slope and expected
return are high when the country j short rate ijt is low. A positive relationship between
term-structure slope and BCT expected return is documented in Fama and Bliss (1987).

4.1.2 Demand Shocks

We next determine how the exchange rate and bond yields respond to changes in the
demand for foreign currency, home bonds, and foreign bonds. Since we assume no demand
risk in this section, we take the demand changes to be unanticipated and one-off. Demand
changes by currency traders correspond to shocks to the currency demand factor γt.
Demand changes by bond investors in country j correspond to shocks to the country j

bond demand factor βjt. Following the shocks, the demand factors revert deterministically
to their mean of zero.

Without loss of generality, we take θe to be positive, which means that an increase in
γt corresponds to a drop in demand for foreign currency. We take θj(τ) to be positive for
all τ , which means that an increase in βjt corresponds to a drop in demand for the bonds
of country j.

Proposition 4.3. Suppose that arbitrage is segmented, θe > 0 and θj(τ) > 0 for all τ .
• An unanticipated one-off drop in currency traders’ demand for foreign currency

(increase in γt) causes the foreign currency to depreciate if currency arbitrageurs
are risk-averse (ae > 0). It has no effect on bond yields.
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• An unanticipated one-off drop in investor demand for the bonds of country j (increase
in βjt) raises bond yields in country j if bond arbitrageurs in that country are risk-
averse (aj > 0). It has no effect on bond yields in the other country and on the
exchange rate.

When arbitrage is segmented, changes to the demand for an asset class—foreign cur-
rency, home bonds, foreign bonds—affect that asset class only. When, for example, the
demand for bonds in country j drops, these bonds become cheaper and their yields in-
crease, while foreign currency and bonds in the other country are unaffected.

4.2 Global Arbitrage

When arbitrage is global, the prices of the risk factors are equal across currency and bond
markets. Solving for equilibrium reduces to solving a system of three nonlinear scalar
equations, as shown in Proposition B.4 in Appendix B. Using our characterization of
equilibrium, we next derive equilibrium properties.

4.2.1 Short-Rate Shocks and Carry Trades

Proposition 4.4. Suppose that arbitrage is global.
• The effects of shocks to the country-j short rate ijt on the exchange rate and the

CCT’s expected return have the same properties as in Proposition 4.1, and on bond
yields in country j and the BCT’s expected return have the same properties as
in Proposition 4.2, except that the price-elasticity condition can hold for currency
traders or bond investors (αe > 0 or αj(τ) > 0).

• When arbitrageurs are risk-averse (a > 0) and the demand of currency traders is
price-elastic (αe > 0), a drop in ijt causes bond yields in country j′ ̸= j to drop

(Aj′j(τ) > 0) and the BCT’s expected return to drop (
∂
(
µ
(τ)

j′t−ij′t

)
∂ijt

> 0).
• The effect of ijt on bond yields is smaller in country j′ than in country j (Ajj(τ) >

Aj′j(τ)).

Bond yields respond to shocks differently under global and segmented arbitrage. Under
segmented arbitrage, a shock to the short rate ijt in country j affects bond yields in that
country only. By contrast, under global arbitrage, and provided that aαe > 0, the shock
affects bond yields in both countries, even though the short rate ij′t in country j′ ̸= j

does not change. When ijt drops, bond yields in both countries drop.
Short-rate shocks are transmitted across countries because global arbitrageurs engage

in the CCT and use the bond market to hedge. Recall that under both segmented and
global arbitrage, a drop in the home short rate iHt raises the profitability of the CCT,
making it more attractive to arbitrageurs. When the demand of currency traders is
price-elastic, the arbitrageurs’ equilibrium investment in the CCT increases. Because
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arbitrageurs hold more foreign currency (higher WFt), they become more exposed to the
risk that the foreign short rate iFt drops and the foreign currency depreciates. Global
arbitrageurs hedge that risk by buying foreign bonds because their price rises when iFt

drops. This pushes the prices of foreign bonds up and their yields down.
An additional consequence of hedging by global arbitrageurs is greater under-reaction

of the exchange rate and bond yields to short rates. When iHt drops, arbitrageurs invest
more in the CCT and in the home BCT. Each of these trades exposes them to a rise in
iHt. Hence, global arbitrageurs are less eager than segmented arbitrageurs to buy foreign
currency and home bonds following a drop in iHt, and the expected return of the CCT
and the home BCT increase more than under segmented arbitrage. In particular, when
the demand of currency traders is inelastic and that by bond investors is elastic, a drop in
iHt raises the CCT’s expected return under global arbitrage but leaves it unaffected under
segmented arbitrage. Likewise, when the demand of home bond investors is inelastic and
that by currency traders is elastic, a drop in iHt raises the home BCT’s expected return
under global arbitrage but leaves it unaffected under segmented arbitrage.

We next turn to variants of the CCT studied in the empirical literature. One variant
is a hybrid CCT in which the trading horizon is short but the trading instruments are
long-term. Borrowing in the home country and investing in the foreign country is done
with the respective τ -year bonds, and the positions are held for a short horizon dt. The
return of the hybrid CCT in home-currency units is

d(P
(τ)
Ft et)

P
(τ)
Ft et

− dP
(τ)
Ht

P
(τ)
Ht

=

(
det
et

+ (iFt − iHt)dt

)

+

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et

− iFtdt

)
−

(
dP

(τ)
Ht

P
(τ)
Ht

− iHtdt

)
. (4.2)

Hence, the hybrid CCT can be viewed as a combination of (i) the basic CCT, (ii) a long
position in the foreign BCT, and (iii) a short position in the home BCT.

A second variant is a long-horizon CCT, in which borrowing in the home country and
investing in the foreign country is done with the respective τ -year bonds, and the positions
are held until the bonds’ maturity. The return of the long-horizon CCT in home-currency
units and log terms is

log

(
et+τ

P
(τ)
Ft et

)
− log

(
1

P
(τ)
Ht

)
=

∫ t+τ

t

(
log

(
es+ds

es

)
+ iFsds− iHsds

)
+

(
τy

(τ)
Ft −

∫ t+τ

t

iFsds

)
−
(
τy

(τ)
Ht −

∫ t+τ

t

iHsds

)
, (4.3)

where the equality follows from (2.1). Hence, the long-horizon CCT can be viewed as
the combination of (i) a sequence of basic CCTs, (ii) a long position in a long-horizon
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foreign BCT, and (iii) a short position in a long-horizon home BCT. The long-horizon
BCT in country j involves buying bonds in country j and financing that position by
borrowing short-term and rolling over. Proposition 4.5 characterizes the expected returns
of the hybrid CCT and the long-horizon CCT. We express the expected return of the
long-horizon CCT on an annualized basis, as we do for all other expected returns.

Proposition 4.5. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0),
and the demand of currency traders or of bond investors is price-elastic (αe > 0 or
αj(τ) > 0).

• The hybrid CCT’s and the long-horizon CCT’s expected returns rise following a
drop in the home short rate iHt or a rise in the foreign short rate iFt, provided that
the maturity τ of the bonds involved in these trades lies in an interval (0, τ ∗). The
threshold τ ∗ is infinite when countries are symmetric.

• The sensitivity of the hybrid CCT’s expected return to (iHt, iFt) is smaller than for
the basic CCT. The sensitivity of the long-horizon CCT’s expected return to (iHt, iFt)

is smaller than for the corresponding sequence of basic CCTs.
• When maturity τ goes to infinity, regardless of whether (a, αe, α(τ)) are non-zero:

– The expected returns of the hybrid CCT and long-horizon CCT go to zero.
– The difference in real yields across countries goes to zero.

Short-rate shocks move the expected returns of the hybrid CCT and the long-horizon
CCT in the same direction as for the basic CCT, except possibly when the maturity
τ of the bonds involved in these trades is long. The effects of short-rate shocks on the
hybrid CCT and the long-horizon CCT are smaller than for the corresponding basic CCTs
because the shocks’ effects through the BCTs work in the opposite direction. Consider,
for example, a drop in the home short rate. Proposition 4.4 implies that the expected
return of the basic CCT increases, but so does the expected return of the home BCT,
which enters as a short position in the hybrid CCT and the long-horizon CCT.

When the maturity τ of the bonds involved in the hybrid CCT and the long-horizon
CCT goes to infinity, the effects of short-rate shocks through the BCTs offset fully those
through the basic CCT. As a consequence, short-rate shocks have no effect on the hybrid
CCT’s and the long-horizon CCT’s expected returns. The expected returns of both trades
go to zero, and so does the difference in real yields across countries. The proofs of
these convergence results require that the functions {Aj(τ)}j=H,F converge to finite limits,
or equivalently that the eigenvalues of the matrix M have positive real parts. These
conditions hold in the absence of demand risk, as shown in Lemma B.1 in Appendix B,
but do not necessarily hold with demand risk. They do not hold, in particular, in our
estimated model in Section 5.
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4.2.2 Demand Shocks

Under global arbitrage, shocks to the demand for an asset class (foreign currency, home
bonds, foreign bonds) affect all other assets. This is in contrast to segmented arbitrage,
where only the asset class for which demand changes is affected (Proposition 4.3).

Proposition 4.6. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0),
the functions (αH(τ), αF (τ)) are non-increasing, and θe > 0. An unanticipated one-off
drop in currency traders’ demand for foreign currency (increase in γt):

• Causes the foreign currency to depreciate.
• Raises bond yields in the home country.
• Lowers bond yields in the foreign country.

A drop in currency traders’ demand for foreign currency causes it to depreciate, as
in Proposition 4.3. Additionally, hedging by global arbitrageurs causes home bond prices
to drop and foreign bond prices to rise. Indeed, arbitrageurs accommodate the drop in
demand for foreign currency by holding more of it. Hence, they become more exposed
to a rise in the home short rate iHt and to a decline in the foreign short rate iFt. This
makes them less willing to hold home bonds, which drop in price when iHt rises, and more
willing to hold foreign bonds, which rise in price when iFt drops.

Proposition 4.7. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0),
the functions (αH(τ), αF (τ)) are non-increasing, and the function θj(τ) is positive. An
unanticipated one-off drop in investor demand for the bonds of country j (increase in βjt):

• Raises bond yields in country j.
• Raises bond yields in country j′ ̸= j when the demand of currency traders is price-

elastic (αe > 0).
• Causes the foreign currency to depreciate if j = H, and to appreciate if j = F .

A drop in investor demand for home bonds depresses their prices, as in Proposition
4.3. Additionally, hedging by global arbitrageurs causes prices for foreign bonds to drop
and the foreign currency to depreciate. Indeed, arbitrageurs accommodate the drop in
demand for home bonds by holding more such bonds. Hence, they become more exposed
to a rise in the home short rate iHt. This makes them less willing to hold foreign currency,
which depreciates when iHt rises. If the demand of currency traders is price-elastic, then
arbitrageurs hold less foreign currency in equilibrium. Hence, they become less exposed
to a drop in the foreign short rate iFt and less willing to hold foreign bonds, which rise in
price when iFt drops. A drop in demand for foreign bonds has symmetric effects.
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4.3 Monetary Policy Transmission

Our analysis has implications for the domestic and international transmission of monetary
policy. Consider first conventional monetary easing at home, modelled as an unanticipated
cut to the home short rate iHt (Propositions 4.1, 4.2 and 4.4). The rate cut propagates
imperfectly along the home term structure and causes the home currency to depreciate.
Assuming that the foreign short rate remains unchanged, yields on foreign bonds do not
move under segmented arbitrage. Under global arbitrage instead, foreign bond yields
decrease. Thus, there is imperfect insulation under global arbitrage, in the sense that
foreign monetary conditions, interpreted as the shape of entire yield curve, are affected
by domestic monetary conditions.

Consider next QE purchases of home bonds, modelled as an unanticipated drop in
the demand factor βHt (Propositions 4.3 and 4.7). This policy decreases home bond
yields. The exchange rate and yields of foreign bonds remain unchanged under segmented
arbitrage. Under global arbitrage instead, yields on foreign bonds decrease and the home
currency depreciates. Once again, foreign monetary conditions are affected by domestic
monetary conditions under global arbitrage, and there is imperfect insulation.

For both conventional and unconventional policies, domestic and foreign monetary
conditions co-move positively: easing at home eases abroad and vice versa. Moreover,
both types of policies affect the exchange rate: conventional easing causes the home
currency to depreciate, and QE does the same. The imperfect insulation result with global
arbitrage is at odds with the Trilemma, provided that the latter is broadly interpreted
as stating that with perfect capital mobility a floating exchange rate provides monetary
autonomy not just in setting short rates but also in shaping the entire yield curve.5

5 Demand Risk
In this section we return to the full model analyzed in Section 3 with global arbitrage and
stochastic demand for bonds and foreign currency. We estimate the model parameters
from the data and use the estimated model to examine two sets of issues. First, the drivers
of currency and bond returns, as well as the predictability of these returns. Second, the
domestic and international transmission of monetary policy.

5.1 Estimation

Our baseline estimation strategy is to use Maximum Likelihood Estimation (MLE) on
time-series data on exchange rates and bond yields. As an alternative estimation strategy,

5Monetary autonomy can be recovered if the central bank uses a combination of conventional and
unconventional policy tools. We leave studying the design of such policies for future work. See Kamdar
and Ray (2024) for a model of optimal short-rate and balance-sheet tools in a closed economy.
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we use Generalized Method of Moments (GMM), matching model-implied moments on
exchange rates, bond yields, and trading volume to their empirical counterparts. In
Appendix C.4, we describe our GMM estimation method and results. The GMM point
estimates are similar to the MLE ones but yield significantly wider confidence intervals
for the exchange-rate results.

To compute the log-likelihood, we assume that observations are made once every ∆t

years. Integrating the dynamics (2.7) of the 5 × 1 vector qt ≡ (iHt, iFt, γt, βHt, βFt)
⊤

between t and t+∆t, we find

qt+∆t − q̄ = e−Γ∆t(qt − q̄) +

∫ t+∆t

t

e−Γ(t+∆t−s)ΣdBs. (5.1)

The covariance matrix Σ̂∆t ≡
∫ t+∆t

t
e−Γ(t+∆t−s)ΣΣ⊤e−Γ⊤(t+∆t−s)ds of the innovation term∫ t+∆t

t
e−Γ(t+∆t−s)ΣdBs satisfies the Lyapunov equation

ΓΣ̂∆t + Σ̂∆tΓ
⊤ = ΣΣ⊤ − e−Γ∆tΣΣ⊤e−Γ⊤∆t. (5.2)

We observe a K×1 vector pt of demeaned log exchange-rate and bond-yield data that are
related to qt through pt = A(qt− q̄), where K ≥ 5 and the K×5 matrix A is endogenously
determined from the model parameters. Assuming that A has full rank (=5), we can write
the dynamics of pt as

pt+∆t = Ae−Γ∆tA+pt + A

∫ t+∆t

t

e−Γ(t+∆t−s)ΣdBs, (5.3)

where A+ = (A⊤A)−1A⊤ is the Moore-Penrose inverse of A. Since the distribution of
pt+∆t conditional on pt is normal with mean Ae−Γ∆tA+pt and covariance matrix AΣ̂∆tA

⊤,
the log-likelihood is

L ≡ −1

2

T∑
t=1

(
pt+∆t − Ae−Γ∆tA+pt

)⊤ (
AΣ̂∆tA

⊤
)−1 (

pt+∆t − Ae−Γ∆tA+pt
)

− T

2
log det

(
AΣ̂∆tA

⊤
)
, (5.4)

where T is the length of the time-series. The estimated model parameters are the matrices
Γ and Σ that determine the drift and diffusion, respectively, of qt, the scalars (αe, θe) that
determine the demand of currency traders, the functions {(αj(τ), θj(τ))}j=H,F that deter-
mine the demand of bond investors in each country, and the coefficient a of arbitrageur
risk aversion. The parameters (ζe, {ζj(τ)}j=H,F ) in the demand intercepts determine long-
run means rather than responses to shocks, and we leave them out of our estimation that
uses demeaned data pt. We also leave out of our estimation the inflation rates because we
assume that they are equal across countries (πH = πF ) and thus that the exchange rate
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has no trend. Assuming no persistent differences in inflation rates across countries is a
reasonable approximation in our estimation, where we take the home country to be the
United States (US) and the foreign country to be the Eurozone (EZ).

We reduce the model parameters to a set that is manageable yet sufficiently rich.
We take the mean-reversion matrix Γ to be diagonal except for the non-zero terms Γ3,1

and Γ3,2. Thus, the factors do not respond to each other’s movements except for the
currency demand factor γt that responds to short-rate movements in both countries. We
take the covariance matrix Σ to be diagonal except for the non-zero term Σ1,2 (setting
Σ2,1 to zero is without loss of generality because the data only identify ΣΣ⊤). Thus,
innovations to the factors are independent except for those to short rates. We take the
mean reversion of the demand factors and the standard deviation of innovations to these
factors to be the same across home and foreign, setting Γ4,4 = Γ5,5 and Σ4,4 = Σ5,5. The
restrictions on (Γ,Σ) simplify the estimation of the model and the interpretation of the
results, while allowing us to capture two key features of the data: the correlation between
short rates across countries, and the gradual response of exchange rates to short-rate
shocks. Allowing innovations to the currency demand factor to correlate with innovations
to the bond demand factors, as implied by our analysis of forwards and swaps in Appendix
A, yields low correlations and similar estimates for the remaining parameters, as shown in
Appendix C.2. With our assumed restrictions and analogous notation to that in Section
4, we can write Γ and Σ as

Γ =


κiH 0 0 0 0

0 κiF 0 0 0

κγ,iH κγ,iF κγ 0 0

0 0 0 κβ 0

0 0 0 0 κβ

 , Σ =


σiH 0 0 0 0

σiH,iF σiF 0 0 0

0 0 σγ 0 0

0 0 0 σβ 0

0 0 0 0 σβ

 . (5.5)

We assume that the bond demand functions {(αj(τ), θj(τ))}j=H,F take the exponential
form

αj(τ) = αj0 exp(−αj1τ), (5.6)
θj(τ) = θj0θ

2
j1τ exp(−θj1τ), (5.7)

for positive scalars {(αj0, αj1, θj0, θj1)}j=H,F . The function αj(τ) that describes how the
demand slope depends on bond maturity τ is a declining exponential. The function θj(τ)

that describes how the effect of demand shocks on the demand intercept depends on
τ is the product of a declining exponential times τ . We take the demand parameters
(αj0, αj1, θj0, θj1) to be the same across home and foreign, and drop the subscript j. In
the case of θj0 this is a normalization as we explain below. We set the maximum maturity
T to infinity. The exponential specification of demand parallels that in Vayanos and Vila
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(2021), and together with the assumption T = ∞ allow us to simplify the numerical
solution method by using Laplace transforms, as shown in Appendix C.1.

Our estimation does not identify the two demand intercept parameters (θe, θ0) and the
arbitrageur risk-aversion coefficient a. The parameters (θe, θ0) are not identified because
they affect exchange rates and bond yields only through their products (θeγt, θ0βHt, θ0βFt)

with the demand factors. Hence, they affect the log-likelihood only through their products
(θeκγ,iH , θeκγ,iF , θeσγ, θ0σβ) with the parameters (κγ,iH , κγ,iF , σγ, σβ) that describe how
short rates and Brownian shocks affect the demand factors. We focus on these products
and drop (θe, θ0, κγ,iH , κγ,iF , σγ, σβ) as separate parameters. The parameter a is not identi-
fied because it affects the log-likelihood only through its products (aθeκγ,iH , aθeκγ,iF , aθeσγ,

aθ0σβ, aαe, aα0) with the demand parameters. Intuitively, exchange rates and bond yields
can be volatile if demand shocks are modest and arbitrageurs highly risk-averse, or if
shocks are large and arbitrageurs modestly risk-averse. We bring additional information
to calibrate a.

We use pre-set values for the parameters (α1, θ1) rather than estimating them. These
parameters are not well identified by MLE because they have a weak effect on exchange
rates and bond prices, and thus on the log-likelihood. They have a stronger effect on the
distribution of trading volume across maturities, and can thus be identified using volume
data. Volume is not affine in the state variables, however, and cannot be accommodated
by our MLE estimation method. In our GMM estimation we use volume data and obtain
estimates for (α1, θ1). The values for (α1, θ1) that we use in MLE are (0.15, 0.3) in line
with the GMM estimates and broadly in line with Vayanos and Vila (2021). Our results
remain essentially unchanged for a wide range of other choices for (α1, θ1), as shown in
Appendix C.2.

We use the US and the EZ as the home and foreign country, respectively, because they
are roughly comparable in size and because a long time-series of zero-coupon bond yields
for a large set of maturities is available. We use the German yield curve as the foreign
yield curve. We use the Deutsche Mark as the foreign currency prior to introduction of the
Euro in 01/1999. We use quarterly data on exchange rates and bond yields, thus setting
∆t = 1

4
(as in previous sections, the units of time t and maturity τ are years). Our sample

starts in 06/1986, which is when zero-coupon bond yields are consistently available for
maturities up to 20 years, and ends in 04/2021. We also estimate the model on different
subsamples and find similar results as for our main sample, as shown in Appendix C.8.
We source US yields from the Federal Reserve and German yields from the Bundesbank.6

We consider two cases for our K×1 vector pt of observables. In our main case, K = 5

and pt consists of US and German one- and ten-year yields and the Dollar-Euro log ex-
6https://www.federalreserve.gov/data/nominal-yield-curve.htm (Gurkaynak, Sack, and Wright

(2007)) and https://www.bundesbank.de/en/statistics/money-and-capital-markets/interest-rates-and-
yields/term-structure-of-interest-rates.
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change rate. As we confirm with a sensitivity analysis in Appendix C.3, the data allow
us to recover the model parameters as follows: the covariance matrix of innovations to
the home and foreign one-year yields determines (σiH , σiF , σiH,iF ); the covariance between
innovations to the home one- and ten-year yields and its foreign counterpart determine
(κiH , κiF ); the covariances between innovations to home yields and the exchange rate, and
their foreign counterparts, determine (κγ, θeκγ,iF , θeσγ); the covariance matrix of innova-
tions to the home and foreign ten-year yields determines (κβ, θ0σβ, α0); and the variance
of innovations to the exchange rate, together with the covariances between innovations
to yields and the exchange rate, determine (θeσγ, αe). We additionally consider the case
where K = 21 and pt includes US and German yields with maturities from one to ten
years and the Dollar-Euro log exchange rate. The results are similar to those in our main
case, as shown in Appendix C.2.

We finally calibrate a. Since a is the coefficient of arbitrageur absolute risk aversion,
it is equal to the coefficient γ of their relative risk aversion divided by their wealth W .
We set γ = 2, in line with common estimates. An estimate for W can be derived by
identifying arbitrageurs with hedge funds. The assets of hedge funds in the fixed-income,
macro and balanced categories in 2020 were about 5% of US GDP in that year.7 Taking
US GDP as the numeraire, we can thus set W = 5%. We use that value as a lower
bound for W since arbitrageurs can include additional agents such as global banks and
multinational corporations, and use 20% as an upper bound. The implied bounds for a

are 2/5% = 40 and 2/20% = 10.

5.2 Model Fit

Table 1 reports the parameter estimates and standard errors. Innovations to the home
short rate have somewhat higher standard deviation (σiH = 1.16) than to the foreign short
rate (

√
σ2
iH,iF + σ2

iF = 0.936), and are positively correlated (correlation σiH,iF√
σ2
iH,iF+σ2

iF

=

0.361). The demand for foreign currency by currency traders responds negatively to the
home short rate (aθeκγ,iH = −148) and positively to the foreign short rate (aθeκγ,iF =

184). Thus, a drop in the home short rate or a rise in the foreign short rate causes the
demand for foreign currency to rise, holding the exchange rate constant. Innovations to
the home and foreign short rates have similar persistence as innovations to the demand
for foreign currency (κiH = 0.145, κiF = 0.14, and κγ = 0.155) and are all less persistent
than innovations to bond demand (κβ = 0.068).

The slope αe of currency demand can be derived by dividing aαe by a. It ranges from
7.689 (=76.89

10
) for the lower bound of a to 1.922 (=76.89

40
) for the upper bound. Thus, a 1%

drop in the exchange rate raises the demand for foreign currency by an amount ranging
7https://www.barclayhedge.com/solutions/assets-under-management/hedge-fund-assets-under-

management/
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Parameter Value Std. Err.
σiH 1.163 0.076
σiF 0.873 0.058
σiH,iF 0.338 0.081
κiH 0.145 0.058
κiF 0.140 0.046
κβ 0.068 0.055
κγ 0.155 0.100
aθeκγ,iH -148.1 116.9
aθeκγ,iF 184.2 130.6
aθ0σβ 884.8 173.9
aθeσγ 941.6 464.8
aα0 5.379 3.096
aαe 76.89 37.52

Table 1: Estimated model parameters

from 7.7% (= 7.7×1%) to 1.9% of US GDP. The slope parameter α0 of bond demand can
likewise be derived by dividing aα0 by a, and ranges from 0.538 to 0.134. To interpret this
coefficient, consider a uniform 0.1% rise in home or foreign bond yields. This translates
to a price drop of the corresponding τ -year bond by τ × 0.1%, which for a ten-year bond
is 1%, the same as for the exchange-rate exercise. The aggregate bond demand across
maturities rises by an amount ranging from 2.391% (=

∫∞
0

α0 exp(−α1τ)τdτ × 0.1% =
α0

α2
1
× 0.1% = 0.538

0.152
× 0.1%) of US GDP to 0.598%. By comparison, Krishnamurthy and

Vissing-Jorgensen (2012) estimate that a 0.1% drop in the spread between AAA-rated
US corporate bonds and US government bonds raises government bond demand by 5.9%
of US GDP. Their estimate is about four times as large as the midpoint of ours. This
discrepancy may arise because an increase in government bond yields in our estimation
can be accompanied by an increase in corporate bond yields (which mitigates the increase
in the spread). Another estimate comes from Koijen and Yogo (2020), who find that a
1% price drop in the price of long-maturity bonds (maturity of one year or longer) raises
their demand by foreign investors by 1.9%. This estimate is not directly comparable to
ours because we do not distinguish whether investors for a country’s bonds are home or
foreign.

Our MLE estimation strategy delivers precise estimates for most parameters. The
least precisely estimated parameters are (κβ, κγ, θeκγ,iH , θeκγ,iF ), which determine the
persistence of demand shocks and the effect of short-rate shocks to currency demand.
The precision of the parameter estimates matters primarily for our results on return
predictability in Section 5.3 and monetary policy transmission in Section 5.4. We compute
confidence intervals for these results using the covariance matrix of parameter estimates.
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5.3 Currency and Bond Returns

Variance Decomposition of Returns: Figure 1 shows variance decompositions of
currency and bond returns within our estimated model. The top row concerns home
bond returns, the middle row foreign bond returns and the bottom row currency returns
(all in logs). In each row, the left column concerns returns over a one-quarter horizon
and the right column returns over a five-year horizon. In the top and middle rows, each
color represents the fraction of the variance of bond returns explained by each factor,
with the order from bottom to top being (iHt, iFt, βHt, βFt, γt). In the bottom rows, each
bar represents the fraction of the variance of currency returns explained by each factor,
with the order from left to right being (iHt, iFt, βHt, βFt, γt). All variance decompositions
concern the surprise component of returns, derived by subtracting conditional expected
returns from realized returns. We examine the variation of conditional expected returns
later in this section. The variance decompositions of bond returns are plotted as function
of the maturity at the end of the return horizon. For example, the decomposition of the six-
year bond’s five-year return is shown at the one-year x-axis coordinate. The calculations
of currency and bond returns and of the model-implied variance decompositions are in
Appendix C.5.

Figure 1 implies that the demand factors drive most of the variation of the returns on
currency and long-maturity bonds. In the case of currency returns, the currency demand
factor drives approximately 90% of the variation over the one-quarter horizon and 70%
over the five-year horizon. The home and foreign short rates drive most of the remaining
variation. In the case of bond returns, over both return horizons, the home and foreign
bond demand factors drive approximately 80% of the variation for bonds with ten-year
maturity (where maturity is measured at the end of the horizon) and well over 90% of the
variation for bonds with maturities of twenty years and longer. Most of the variation of
a country’s long-maturity bond returns is driven by the local bond demand factor. Yet,
the bond demand factor in the other country plays a role as well, indicating significant
cross-country spillovers. The home and foreign short rates drive most of the remaining
variation.

Figure 1 implies additionally a disconnect between the exchange rate and yields on
long-maturity bonds. The exchange rate moves primarily because of shocks to the cur-
rency demand factor, with shocks to the bond demand factors having a small effect.
Conversely, yields of long-maturity bonds move primarily because of shocks to the bond
demand factors, with shocks to the currency demand factor having a small effect. Long-
maturity bond yields, however, are connected across countries: yields in one country are
influenced significantly by shocks to the bond demand factor in the other country.

Why is the exchange rate disconnected from yields on long-maturity bonds? And why
are long-maturity bond yields connected across countries despite their disconnect from
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Figure 1: Variance decomposition of currency and bond returns

the exchange rate? Key to the answers is the comovement between the exchange rate and
bond yields that the demand factors generate. Recall from Section 4 that in the absence
of demand risk, an unanticipated one-off drop in investor demand for home bonds raises
home bond yields, raises foreign bond yields when the demand of currency traders is
price-elastic (ae > 0), and causes the foreign currency to depreciate (Proposition 4.7).
Moreover, the transmission of the home bond demand shock to foreign bond yields occurs
through the currency market: arbitrageurs hold more home bonds in response to the
drop in investor demand, hold less foreign currency because of their increased exposure
(through home bonds) to a rise in the home short rate, and hold fewer foreign bonds
because of their decreased exposure (through foreign currency) to a drop in the foreign
short rate. Thus, if shocks to the home bond demand factor have a weak effect on the
exchange rate, they should also have a weak effect on foreign bond yields.

Introducing the bond demand factors strengthens the transmission of a home bond
demand shock to foreign bond yields but does not affect the shock’s transmission to the
exchange rate. Indeed, because bond demand shocks move home and foreign bond yields
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in the same direction, they induce positive comovement between home and foreign bond
returns, additional to the positive comovement induced by short-rate shocks in Section
4. Because of this additional comovement, a drop in investor demand for home bonds
has a larger negative effect on foreign bond returns than in Section 4. No additional such
comovement is induced between bond and currency returns because home and foreign
bond demand shocks move currency returns in opposite directions. We demonstrate
these mechanisms in Section 5.4, where we examine how the effects of QE depend on the
standard deviation σβ of innovations to the bond demand factors (Figure 6).

A positive correlation between home and foreign bond returns arises more mechani-
cally when home and foreign short rates are positively correlated, as is the case in our
estimated model. Even when short rates are independent, however, long-maturity bond
yields remain positively correlated across countries. Long-maturity bond yields become
independent across countries only when short rates are independent and αe = 0.

With the bond demand factors but without the currency demand factor, the exchange
rate is connected weakly to long-maturity bond yields and strongly to the short rates.
Introducing the currency demand factor weakens the latter connection as well because
currency demand shocks generate variation in the exchange rate that is unrelated to the
short rates. Additionally, because currency demand shocks generate opposite movements
in home and foreign bond yields, as shown in Section 4, they weaken the strong positive
comovement between long-maturity bond yields across countries. They do not undo
that comovement, however. We demonstrate these mechanisms in Section 5.4, where we
examine how the effects of QE depend on the standard deviation σγ of innovations to the
currency demand factor (Figure 6).

Our result that long-maturity bond yields are connected across countries but are
disconnected from the exchange rate holds in the data. In Appendix C.6 we show that
the empirical correlations between quarterly changes to the exchange rate, home bond
yields and foreign bond yields are close to the model-implied ones. It is because of the
low empirical correlation between changes to the exchange rate and bond yields that
our estimation yields near-independent currency and bond demand factors even when we
allow for correlation in Appendix C.2. The demand factors can be interpreted as shocks
affecting different types of agents or intermediaries.

The disconnect between the exchange rate and long-maturity bond yields in our esti-
mated model is consistent with the findings in Chernov and Creal (2023) and Chernov,
Haddad, and Itskokhi (2024) that bond returns span only a small fraction of the variation
in currency returns. Kekre and Lenel (2024) find that spanning improves for long-horizon
returns, and develop a macroeconomic model with discount-rate shocks that delivers more
spanning. Spanning in our estimated model is comparable to the empirical findings in
these papers for short-horizon returns. Spanning in our model for long-horizon returns is
larger than for short-horizon returns, as can be seen by comparing the bottom left and
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right panels in Figure 1, but is not as large as in Kekre and Lenel (2024).

Return Predictability Regressions: We next examine the implications of our esti-
mated model for the predictability of currency and bond returns. We do so by running
common regressions in the asset pricing literature and comparing the empirical coefficients
computed within our sample to the coefficients implied by our model. The empirical co-
efficients are the red circles in Figures 2 and 3, and the model-implied coefficients are the
blue solid lines. The black dashed lines show the UIP benchmark in Figure 2 and the EH
benchmark in Figure 3. Our model generates these benchmarks when setting the arbi-
trageur risk-aversion coefficient a to zero (Corollary B.1). Vertical lines and shaded areas
are 90% confidence intervals for the empirical and model-implied coefficients, respectively.
The calculations of the model-implied coefficients are in Appendix C.7.

Figure 2 reports coefficients for various types of UIP regressions. The top left panel
concerns the hybrid UIP regression of Lustig, Stathopoulos, and Verdelhan (2019, LSV),
in which the return over horizon ∆τ of the hybrid CCT constructed using bonds with
maturity τ is regressed on the foreign-minus-home ∆τ -year yield differential. This regres-
sion nests as a special case, for τ = ∆τ , the standard UIP regression of Bilson (1981) and
Fama (1984). Under UIP, the LSV coefficient should be zero. The empirical coefficients
are positive for short maturities, consistent with Bilson (1981) and Fama (1984). They
decline with maturity and become statistically insignificant for long maturities. This is
consistent with LSV, although LSV’s coefficients, computed over multiple currency pairs
rather than over only Dollar/Euro as in our estimation, are closer to zero. The model-
implied coefficients are close to their empirical counterparts because of the mechanisms
in Propositions 4.1 and 4.5.

The top right panel in Figure 2 concerns the long-horizon UIP regression of Chinn
and Meredith (2004, CM), in which the rate of foreign currency depreciation over horizon
∆τ is regressed on the foreign-minus-home ∆τ -year yield differential. Under the UIP, the
CM coefficient should be one. The empirical coefficients are negative for short maturities.
They increase with maturity and reach one for long maturities, consistent with CM. The
model-implied coefficients increase towards one but do not reach it closely. This reflects
the lack of convergence of the long-horizon CCT’s expected return to zero because not all
eigenvalues of M have positive real parts in our estimated model. Nevertheless, the model-
implied CM coefficients are within the confidence intervals of the empirical coefficients for
the ten-year maturity (and for maturities one through six).

The bottom two panels concern regressions run in Chen and Tsang (2013), Lloyd and
Marin (2020) and Chernov and Creal (2021), in which the rate of foreign currency depre-
ciation over horizon ∆τ is regressed on the foreign-minus-home ∆τ -year yield differential
(level—same regressor as in CM), and the foreign-minus-home differential of the slope of
the term structure (slope). Under UIP, the level coefficient should be one and the slope
coefficient should be zero. As with the CM regression, the coefficients using only one
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Figure 2: Coefficients of UIP regressions

currency pair are imprecisely estimated, but the point estimates are consistent with the
literature. As in the literature, the slope coefficient is positive, meaning that for a given
yield differential, the foreign-minus-home CCT is less profitable when the foreign-minus-
home slope differential is larger. Our model implies a positive slope coefficient, as in the
data. Indeed, suppose that investor demand for foreign bonds is temporarily low. This
pushes up foreign bond yields, raising the foreign-minus-home slope differential. It also
causes the foreign currency to appreciate temporarily (Proposition 4.7), and its future
expected return to decline. As in the data, the predictability of slope in our model is
primarily over short and medium maturities. Overall, our model matches well the UIP
regression evidence.

Figure 3 reports coefficients for various types of EH regressions. The top left and
top right panels concern the Fama and Bliss (1987, FB) regression in the home and
foreign country, respectively. FB regress the excess return over horizon ∆τ of the bond
with maturity τ on the slope of the term structure, measured by the difference between
the forward rate between maturities τ − ∆τ and τ , and the ∆τ -year spot rate (yield).
The bottom left and bottom right panels concern the Campbell and Shiller (1991, CS)
regression in the home and foreign country, respectively. CS regress the change over
horizon ∆τ in the yield of a bond with initial maturity τ on a scaled difference between
the spot rates for maturities τ and ∆τ . Under the EH, the FB coefficient should be zero
and the CS coefficient should be one. The empirical coefficients are consistent with the
findings of FB and CS: the FB coefficient is positive and increasing with maturity, and
the CS coefficient is negative and decreasing with maturity.
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Figure 3: Coefficients of EH regressions

The model-implied FB and CS coefficients have the same sign as their empirical coun-
terparts. In the absence of demand risk, the sign is the same because of the mechanisms
in Proposition 4.2. Demand risk preserves the sign because when bond demand is low,
the slope of the term structure is high and so is the BCT’s expected return. The model-
implied FB coefficients for both countries are slightly below one for short maturities and
rise above one for longer maturities. Conversely, the model-implied CS coefficients are
between zero and minus one for short maturities and drop to below minus one for longer
maturities. The model-implied FB and CS coefficients in the US match closely their em-
pirical counterparts, except for short maturities, where they are overstate EH violations.
The model-implied FB and CS coefficients in Germany match closely their empirical coun-
terparts for short maturities but understate EH violations for longer maturities. In both
cases, the model-implied coefficients have the same monotonicity as in the data but the
extent of monotonicity is weaker than in the data.

5.4 Monetary Policy Transmission

Conventional Policy: We next use our estimated model to study the domestic and
international transmission of monetary policy. We start with conventional policy, and
consider a cut to the short rate by the central bank in country j. We assume that the
cut is unanticipated, occurs at time zero, is unwound over time at a rate κMP

ij possibly
different from κij and affects the currency demand factor according to κγ,ij. We model
the short-rate and currency demand factor movements induced by the cut as separate,
additive components ∆ijt = ∆ij0e

−κMP
ij t and ∆γt = ∆ij0

κγ,ij

κγ−κMP
ij

(
e−κγt − e−κMP

ij t
)

of the
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corresponding processes. We set ∆ij0 = −0.25, implying a cut of 25 basis points (bps),
and κMP

ij = 0.75, implying a half-life of the cut of about a year.
The top left and top right panels of Figure 4 show, respectively, how a cut to the home

short rate affects the home and foreign term structures at time zero and how it affects
the exchange rate over time. The bottom left and right panels show the same for a cut
to the foreign short rate. The home term structure is shown in blue and the foreign term
structure in red. Exchange-rate movements are measured as percentage price changes.
The figure includes 90% confidence intervals.

Figure 4: Conventional monetary policy – Short rate cut

The rate cut affects the domestic term structure but has essentially no effect on the
foreign term structure. This result is consistent with Georgiadis and Jarocinski (2023),
who find that the effects of US conventional policy on foreign term premia are negligible.
The international transmission of conventional policy is weak because of the disconnect
between the exchange rate and long-maturity bond yields. Recall from Section 4 that in
the absence of demand risk, a cut to the home short rate is transmitted to foreign bond
yields through the currency market: arbitrageurs hold more foreign currency because the
CCT becomes more profitable, and hold more foreign bonds because of their increased
exposure (through currency) to a drop in the foreign short rate. In the presence of demand
risk and under our estimated parameters, short rates drive a small fraction of currency
returns. Therefore, arbitrageurs make limited use of the foreign bond market to hedge
their currency position, and the effect of a cut to the home short rate on foreign bond
yields is small.

In the presence of positively correlated short rates or of demand risk, there is an
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additional transmission channel relative to Section 4. In response to a cut to the home
short rate, arbitrageurs hold more home bonds because the home BCT becomes more
profitable. Since home and foreign bonds are positively correlated when short rates are
positively correlated or when there is demand risk (and ae > 0), arbitrageurs become
less willing to hold foreign bonds. This effect works in the opposite direction to that in
Section 4, further weakening the transmission.

The response of the exchange rate to the rate cut is hump-shaped. Following a cut to
the home short rate, the exchange rate jumps up (i.e., the foreign currency appreciates) by
0.4%, then rises further by 0.075% over the next two years, and then declines gradually
to its pre-cut value. The exchange-rate response is hump-shaped because demand for
foreign currency rises gradually following the cut to the home short rate (κγ,iH < 0). The
demand effect is dominant: in its absence, the exchange rate would jump up by roughly
0.15%, only one-half of the effect under UIP (0.25%

κMP
ij

= 0.33%).

Quantitative Easing: We next turn to unconventional policy, and consider QE pur-
chases by the central bank in country j. We assume that the purchases are unanticipated,
occur at time zero, and are unwound over time at a rate κQE

βj possibly different from κβj.
We model the addition to the central bank’s position in the bond with maturity τ as a sep-
arate, additive component θQE

j (τ)∆βjt of the demand-intercept process, where θQE
j (τ) has

the exponential form (5.7) and ∆βjt = ∆βj0e
−κQE

βj t. We allow the parameters (θQE
0 , θQE

1 )

to differ from (θ0, θ1), and normalize ∆βj0 to one. We set θQE
1 = 0.2, implying that QE

purchases are maximized at the five-year maturity ( 1

θQE
1

= 5), θQE
0 = 0.1, implying that

purchases are 10% of GDP (
∫∞
0

θ0θ
2
1 exp(−θ1τ)τdτ =

θ0θ21
θ21

= θ0 = 0.1), and κQE
βj = 0.1,

implying a half-life of purchases of about seven years.
The top left and top right panels of Figure 5 show, respectively, how QE purchases in

the home country affect the home and foreign term structures at time zero and how they
affect the exchange rate over time. The bottom left and right panels show the same for
QE purchases in the foreign country. The coloring, units and confidence intervals are as
in Figure 4. Figure 5 sets arbitrageur risk aversion a to 40. When a = 10, the effects are
one-quarter of those in the figure.

QE purchases have sizeable effects on domestic yields: they reduce the ten-year yield
by 35-45 bps and the thirty-year yield by 65-80 bps. These estimates, derived for a = 40,
align with the literature: according to Wiliams (2014), a consensus estimate is that QE
purchases of 10% of GDP reduce the ten-year yield by 35-65 bps.

QE purchases have sizeable effects on foreign yields as well: they move by one-half to
one-third as much as their domestic counterparts. Hence, conventional and unconventional
policy differ sharply in their transmission to foreign bond yields: spillovers are small for
the former and large for the latter. This result is consistent with Georgiadis and Jarocinski
(2023), who find that the effects of US QE/QT on foreign term premia are large and exceed
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Figure 5: Unconventional monetary policy – Bond purchases

those of conventional policy (which are negligible) and of forward guidance. To explain
the intuition, recall from Section 5.3 that foreign bond yields move because of the foreign
bond demand factor and short rate and because of the home bond demand factor (Figure
1). Since monetary policy does not affect directly foreign bond demand and the short
rate, differences in its transmission to foreign bond yields should be traced to differences in
how it affects domestic bond demand. Unconventional monetary policy has a large effect
on domestic bond demand because it targets it directly: Figure 5 concerns QE purchases
of 10% of GDP. Conventional policy has a smaller effect on domestic demand because it
targets it only indirectly: following the rate cut of 25 bps in Figure 4, investor demand for
domestic bonds drops by only 0.2% of GDP. We illustrate the effects of conventional and
unconventional policy on agents’ holdings of currency and bonds in Appendix C.8 (Figures
C.2 and C.3). Appendix C.8 also includes counterparts of Figures 4 and 5 constructed
using our estimates from different subsamples of the data (Figures C.4 and C.5).

The effect of unconventional policy on the exchange rate is comparable to that of
conventional policy, consistent with Georgiadis and Jarocinski (2023). QE in the home
country causes the foreign currency to appreciate by 0.45%, while QE in the foreign
country causes the foreign currency to depreciate by 0.4%. These effects are smaller than
those on bond returns (a 35-45 bps drop in the ten-year yield translates to a 3.5-4.5% price
rise) because of the disconnect between the exchange rate and bond yields. Note that
since the effect of unconventional policy on the exchange rate is small relative to that
on the long-maturity cross-country yield differential (45 bps for the thirty-year yield),
demand shocks impact the long-horizon CCT’s expected return, even for long maturities.
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Figure 6 shows comparative statics of the effects of QE. We vary the standard deviation
σβ of innovations to the bond demand factors and σγ of innovations to the currency
demand factor. Each parameter varies from zero to its estimated value, which corresponds
to one in the x-axis by normalizing the units. All parameters except for the one that
varies are set to their estimated values. The figure shows the ten-year yield and the
exchange rate. Results in the top row are for σβ and in the bottom row for σγ. Additional
comparative statics, with respect to (α0, αe, σiH,iF ), are in Appendix C.8 (Figure C.6).

Figure 6: Comparative statics of effects of QE

When σβ increases, QE has stronger effects on domestic bond yields. This is because
bond returns become more volatile, and thus arbitrageurs require a larger price increase to
sell (or short-sell) domestic bonds to the central bank. QE has stronger effects on foreign
bond yields as well. This is because the covariance between bond returns across countries
increases, and thus arbitrageurs find foreign bonds more valuable to replace the domestic
bonds that they sell to the central bank. The effects of QE on the exchange rate remain
roughly unchanged because the covariance between currency and bond returns does not
change.

When σγ increases, QE has stronger effects on domestic bond yields and weaker effects
on foreign bond yields and the exchange rate. The effects on the exchange rate are weaker
because short rates drive a smaller fraction of currency returns and thus arbitrageurs
make more limited use of the currency market to hedge a change in their position in
domestic bonds. The effects on foreign bonds are weaker because currency demand shocks
generate opposite movements in home and foreign bond yields, thus weakening the positive
covariance between bond yields across countries.
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Foreign Exchange Interventions: We finally examine the effects of foreign exchange
(FX) interventions. We assume that the home or foreign central bank purchases foreign
currency and that these purchases are unanticipated, occur at time zero, and are unwound
over time at a rate κFX

γ possibly different from κγ. We model the net addition to the
central bank’s position in foreign currency as a separate, additive component θFX

e ∆γt of
the currency demand factor process, where ∆γt = ∆γ0e

−κFX
γ t. We normalize ∆γ0 to one,

set κFX
γ = 0.75, implying a half-life of the FX intervention of about one year as in the

conventional monetary policy exercise, and θFX
e = 0.1, implying that the FX intervention

is 10% of GDP as in the unconventional monetary policy exercise.
The top left and top right panels of Figure 7 show, respectively, how the FX interven-

tion affects the home and foreign term structures at time zero and how they affect the
exchange rate over time. The coloring, units and confidence intervals are as in Figure 4.
Figure 5 sets arbitrageur risk aversion a to 40. When a = 10, the effects are one-quarter
of those in the figure.

Figure 7: Foreign currency intervention

The FX intervention has a large effect on the exchange rate: the foreign currency
appreciates by nearly 3% on impact, and depreciates gradually to its pre-intervention
value as the intervention is unwound. On the other hand, the intervention’s effects on the
home and foreign yield curve are weak: ten-year yields change by 2-3 bps and thirty-year
yields by 2 bps. The effects on yields are weak because the exchange rate and bond yields
are disconnected.

6 Concluding Remarks
We develop a two-country model in which currency and bond markets are populated by
different investor clienteles, and segmentation is partly overcome by global arbitrageurs
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with limited capital. We show that the combination of limited arbitrage and price-elastic
clienteles gives rise to the empirically documented violations of UIP and EH, and to the
ways in which the violations are connected. The resulting risk premia in currency and
bond markets, which are time-varying and connected, play a key role in the transmis-
sion of monetary policy. It is through changes in risk premia in both markets that QE
purchases lower domestic and foreign bond yields and depreciate the currency, and that
short-rate cuts lower foreign bond yields. Movements in the exchange rate in our model
are almost uncorrelated with movements in long-maturity bond yields, and yet the cur-
rency market is instrumental in transmitting bond demand shocks across countries. In
particular, the effects of QE/QT on foreign bond yields are sizeable, and stronger than
those of conventional policy. At the same time, because of the disconnect between the
exchange rate and bond yields, the transmission of QE/QT to the exchange rate is weaker,
and foreign exchange interventions by central banks have strong effects on the exchange
rate but weak effects on bond yields.

A natural next step is to embed our model within a fuller macroeconomic setting, in
which short rates, inflation, and the demands of currency traders and bond investors are
determined endogenously. Ray (2019) and Ray, Droste, and Gorodnichenko (2024) inte-
grate elements of bond-market segmentation and limited arbitrage into closed-economy
macroeconomic settings. Doing the same in multi-country settings entails additional
challenges, such as connecting the flow demand for foreign assets arising from households’
expenditure switching between domestic and foreign goods to the stock demand by cur-
rency traders, and connecting the capital gains and losses of arbitrageurs to countries’
net foreign assets. We address these challenges in ongoing work (Gourinchas, Ray, and
Vayanos (2024, GRV1)), where we develop a two-country New Keynesian model in which
currency and bond markets are segmented for households and are partly integrated by
arbitrageurs with limited capital.
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Online Appendix for
“A Preferred-Habitat Model of Term Premia,

Exchange Rates, and Monetary Policy Spillovers”

A Forwards and Swaps
We show that the equilibrium with a currency forward market is equivalent to one without
it but with different demands for foreign assets, home bonds and foreign bonds. The
equivalence result extends to swaps because they are portfolios of forwards.

We model the demand for currency forwards as follows. Currency traders with pref-
erences for currency forwards with maturities in [τ, τ + dτ ] are in measure dτ , and their
demand, expressed in units of the home currency, is

Z
(τ)
et = −(ζe(τ) + θe(τ)γt), (A.1)

where (ζe(τ), θe(τ)) are functions of τ .
Since global arbitrageurs can trade costlessly foreign currency, home bonds, and for-

eign bonds, Covered Interest Parity (CIP) holds. Moreover, buying Z
(τ)
et of the currency

forward with maturity τ is equivalent to the combination of (i) selling Z
(τ)
et of the home

bond with maturity τ for home currency, (ii) selling Z
(τ)
et of home currency for foreign

currency, and (iii) selling Z
(τ)
et of foreign currency for the foreign bond with maturity τ .

Hence, the equilibrium with the currency forward market is equivalent to one without
it but with Z

(τ)
et added to the demand (2.4) for foreign assets, −Z

(τ)
et added to the home

bond demand (2.5), and Z
(τ)
et added to the foreign bond demand (2.5). The demand for

foreign assets becomes

Zet +

∫ T

0

Z
(τ)
et dτ = −αe log(et)− (ζet + θeγt)−

∫ T

0

(ζe(τ) + θe(τ)γt)dτ

instead of Zet. The demand for country j bonds with maturity τ becomes

Z
(τ)
jt +(−1)1{j=H}Z

(τ)
et = −αj(τ) log

(
P

(τ)
jt

)
−(ζj(τ) + θj(τ)βjt)−(−1)1{j=H} (ζe(τ) + θe(τ)γt)

instead of Z(τ)
jt . Forwards induce a negative correlation between the demand for foreign

assets and for home bonds, and a positive correlation between the demand for foreign
assets and for foreign bonds.
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B Proofs
Proposition B.1 characterizes the equilibrium in Section 3. We denote by (EiH ,EiF ,Eγ,EβH ,

EβF ) the five columns of the 5× 5 identity matrix.

Proposition B.1. When arbitrage is global, the exchange rate et is given by (3.1) and
bond prices P

(τ)
jt in country j = H,F are given by (3.2), with (Ae, Ce) solving

MAe − EiH + EiF = 0, (B.1)

− A⊤
e Γq̄ − (πF − πH) +

1

2
A⊤

e ΣΣ
⊤Ae = A⊤

e λC , (B.2)

and (Aj(τ), Cj(τ)) solving

A′
j(τ) +MAj(τ)− Eij = 0, (B.3)

C ′
j(τ)− Aj(τ)

⊤Γq̄ +
1

2
Aj(τ)

⊤ΣΣ⊤ (Aj(τ) + 2Ae1{j=F}
)
= Aj(τ)

⊤λC , (B.4)

with the initial conditions Aj(0) = Cj(0) = 0, and

M ≡ Γ⊤ − a

(
(θeEγ − αeAe)A

⊤
e

+
∑

j=H,F

∫ T

0

(θj(τ)Eβj − αj(τ)Aj(τ))Aj(τ)
⊤dτ

)
ΣΣ⊤, (B.5)

λC ≡ aΣΣ⊤

(
(ζe − αeCe)Ae +

∑
j=H,F

∫ T

0

(ζj(τ)− αj(τ)Cj(τ))Aj(τ)dτ

)
. (B.6)

Proof of Proposition B.1: Using the definitions of (EiH ,EiF ,Eγ,EβH ,EβF ), we can
write (3.16) as

aΣΣ⊤

(
Ae (θeEγ − αeAe)

⊤ +
∑

j=H,F

∫ T

0

Aj(τ) (θj(τ)Eβj − αj(τ)Aj(τ))
⊤ dτ

)
qt

+ aΣΣ⊤

(
(ζe − αeCe)Ae +

∑
j=H,F

∫ T

0

(ζj(τ)− αj(τ)Cj(τ))Aj(τ)

)
= −(M − Γ⊤)⊤qt + λC , (B.7)

where the second step follows from the definitions of (M,λC). We next substitute (µet, {µ(τ)
jt }j=H,F , λt)

from (3.4), (3.7), (3.8) and (B.7) into the arbitrageurs’ first-order condition. Substituting
into (3.10), we find an equation that is affine in qt. Equation (B.1) follows by identifying
the linear terms in qt, and (B.2) follows by identifying the constant terms. Substituting
into (3.11), we find an equation that is affine in qt. Equation (B.3) follows by identifying
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the linear terms in qt, and (B.4) follows by identifying the constant terms. The initial
conditions Aj(0) = Cj(0) = 0 follow because the price of a bond with zero maturity is its
face value, which is one.

Solving the system of (B.1)-(B.4) reduces to solving a system of 25 nonlinear scalar
equations. Indeed, taking the 5 × 5 matrix M as given, we can solve the system (B.1)
of five scalar equations in the elements of the 5 × 1 vector Ae, the system (B.3) of five
linear ODEs in the elements of the 5 × 1 vector AH(τ), and the same system (B.3) of
five linear ODEs in the elements of the 5 × 1 vector AF (τ). We can then substitute
back into the definition (B.5) of M to derive the system of 25 nonlinear scalar equations.
Given a solution to that system, (B.2) determines Ce uniquely, and (B.4) determines
(CH(τ), CF (τ)) uniquely. Since for a = 0, (B.5) implies M = Γ⊤ and (B.6) implies
λC = 0, (B.1) implies Ae = (Γ−1)

⊤
(EiH − EiF ) and (B.2) implies (3.17).

Corollary B.1 specializes Proposition B.1 to the case where arbitrageurs are risk-
neutral or their risk aversion goes to zero.

Corollary B.1. Suppose that arbitrage is global.
• When arbitrageurs are risk-neutral (a = 0), UIP and EH hold: the expected return

on foreign currency is µUIP
et ≡ iHt − iFt, and the expected return on country-j bonds

is µ
(τ)EH
jt ≡ ijt. Stationarity of the real exchange rate, as per the conjecture (3.1),

requires (3.17).
• When arbitrageurs’ risk aversion goes to zero (a → 0), the expected return on foreign

currency goes to µUIP
et and the expected return on country-j bonds goes to µ

(τ)EH
jt

only when (3.17) holds. Stationarity of the real exchange rate does not require (3.17)
if αe > 0.

Proof of Corollary B.1: The results for a = 0 follow from the arguments before the
corollary’ statement. When a goes to zero, (B.1), (B.3) and (B.5) imply that M goes to
Γ⊤ and (Ae, {Aj(τ)}j=H,F ) have the finite limits

lim
a→0

Ae =
(
Γ−1
)⊤

(EiH − EiF ) ,

lim
a→0

Aj(τ) =
(
Γ−1
)⊤ (

I − e−Γ⊤τ
)
Eij.

When (3.17) holds, (B.2), (B.6) (B.6) are met with λC having a zero limit and (Ce, {Cj(τ)}j=H,F )

having finite limits. Equation (3.16) then implies that λt goes to zero, which means from
(3.10) and (3.11) that UIP and EH hold in the limit. When instead (3.17) does not hold,
(B.2) implies that A⊤

e λC has a non-zero limit. When, in addition, αe > 0, (B.2), (B.6)
(B.6) are met with λC having a non-zero limit, {Cj(τ)}j=H,F having finite limits, and Ce

going to plus or minus infinity at the rate 1
a
. Equation (3.16) then implies that λt does

not go to zero, which means from (3.10) and (3.11) that UIP and EH do not hold.

A3



Propositions B.2 and B.3 characterize the equilibrium in the currency and bond mar-
kets, respectively, under segmented arbitrage and the parameter restrictions assumed in
Section 4.

Proposition B.2. Suppose that arbitrage is segmented, the matrices (Γ,Σ) are diagonal,
and Σ3,3 = Σ4,4 = Σ5,5 = 0. The exchange rate et is given by (3.1), with (AiHe, AiFe)

positive and equal to the unique solution of

κijAije − 1 = −aeαeAije

(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)
, (B.8)

and Ce solving

− κiHiHAiHe + κiF iFAiFe − (πF − πH) +
1

2
σ2
iHA

2
iHe +

1

2
σ2
iFA

2
iFe

= ae (ζe − αeCe)
(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)
. (B.9)

Proof of Proposition B.2: The first-order condition in the currency market is

µet + iFt − iHt = A⊤
e λet, (B.10)

where Ae ≡ (AiHe,−AiFe) and λet ≡ aeWFt(σ
2
iHAiHe,−σ2

iFAiFe). It follows from (3.10)
by keeping only the term WFtAe in the parenthesis in (3.12), taking Σ to be diagonal with
Σ3,3 = Σ4,4 = Σ5,5 = 0, and replacing a by ae. Proceeding as in the derivation of (3.16)
and using γt = βHt = βFt = 0, we find λet = (λeHt, λeF t) with

λejt = aeσ
2
ij [ζe − αe (AiHeiHt − AiFeiFt + Ce)]Aije(−1)1{j=F} (B.11)

for j = H,F . Since (Γ,Σ) are diagonal with Σ3,3 = Σ4,4 = Σ5,5 = 0 and γt = βHt = βFt =

0, we can write (3.4) as

µet = −AiHeκiH(iH−iHt)+AiFeκiF (iF −iFt)−(πF −πH)+
1

2
A2

iHeσ
2
iH+

1

2
A2

iFeσ
2
iF . (B.12)

Substituting λet from (B.11) and µet from (B.12) into (B.10), we find an equation that
is affine in (iHt, iFt). Equation (B.8) follows by identifying the linear terms in (iHt, iFt),
and (B.9) follows by identifying the constant terms.

When aαe = 0, (B.8) has the unique solution (AiHe, AiFe) =
(

1
κiH

, 1
κiF

)
, which is

positive. Consider next the case aαe > 0. A solution (AiHe, AiFe) to (B.8) must be
positive, as can be seen by writing that equation as

[
κij + aeαe

(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)]
Aije = 1. (B.13)

Since (AiHe, AiFe, aαe) are positive, the right-hand side of (B.8) is negative. Therefore,
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the left-hand side is negative as well, which implies AiHe <
1

κHj
and AiFe <

1
κFj

. Dividing
(B.8) written for j = H by (B.8) written for j = F , we find

1− κiHAiHe

1− κiFAiFe

=
AiHe

AiFe

⇔ AiHe =
AiFe

1 + (κiH − κiF )AiFe

. (B.14)

Equation (B.14) determines AiHe as an increasing function of AiFe ∈
[
0, 1

κiF

]
, equal to

zero for AiFe = 0, and equal to 1
κiH

for AiFe =
1

κiF
. Substituting AiHe as a function of AiFe

in (B.13) written for j = F , we find an equation in the single unknown AiFe. The left-
hand side of that equation is increasing in AiFe, is equal to zero for AiFe = 0, and is equal
to a value larger than one for AiFe = 1

κiF
. Hence, that equation has a unique solution

AiFe ∈
(
0, 1

κiF

)
. Given that solution, (B.14) determines AiHe ∈

(
0, 1

κiH

)
uniquely. Given

(AiHe, AiFe), (B.9) determines Ce uniquely if αe > 0. If αe = 0, then the restriction

iH − πH = iF − πF +

(
1

2
− aeζe

)(
σ2
iH

κ2
iH

+
σ2
iF

κ2
iF

)
(B.15)

on model parameters must be imposed and Ce is indeterminate.

Proposition B.3. Suppose that arbitrage is segmented, the matrices (Γ,Σ) are diagonal,
and Σ3,3 = Σ4,4 = Σ5,5 = 0. Bond prices P

(τ)
jt in country j = H,F are given by (3.2),

with Aij′j(τ) equal to zero for j′ ̸= j and (Aijj(τ), Cij(τ)) equal to the unique solution of
the system

A′
ijj(τ) + κijAijj(τ)− 1 = −ajσ

2
ijAijj(τ)

∫ T

0

αj(τ)Aijj(τ)
2dτ, (B.16)

C ′
j(τ)− κijijAijj(τ) +

1

2
σ2
ijAijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
= ajσ

2
ijAijj(τ)

∫ T

0

[ζj(τ)− αj(τ)Cj(τ)]Aijj(τ)dτ, (B.17)

with the initial conditions Aijj(0) = Cj(0) = 0.

Proof of Proposition B.3: The first-order condition in the country-j bond market is

µ
(τ)
jt − ijt = Aj(τ)λjt, (B.18)

where Aj(τ) ≡ Aijj(τ) and λjt ≡ ajσ
2
ij

∫ T

0
X

(τ)
jt Aijj(τ)dτ . It follows from (3.11) by keeping

only the term
∫ T

0
X

(τ)
jt Aj(τ)dτ in the parenthesis in (3.12), taking Σ to be diagonal with

Σ3,3 = Σ4,4 = Σ5,5 = 0, replacing a by aj, and conjecturing that in equilibrium Aij′j(τ) = 0

for j′ ̸= j. Proceeding as in the derivation of (3.16) and using γt = βHt = βFt = 0 and
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Aij′j(τ) = 0 for j′ ̸= j, we find

λjt = ajσ
2
ij

(∫ T

0

[ζj(τ)− αj(τ) (Aijj(τ)ijt + Cj(τ))]Aijj(τ)dτ

)
. (B.19)

Since (Γ,Σ) are diagonal with Σ3,3 = Σ4,4 = Σ5,5 = 0, γt = βHt = βFt = 0, and
Aij′j(τ) = 0 for j′ ̸= j, we can write (3.7) and (3.8) as

µ
(τ)
jt = A′

ijj(τ)ijt+C ′
j(τ)−Aijj(τ)κij(ij−ijt)+Aijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
σ2
ij. (B.20)

Substituting λjt from (B.19) and µjt from (B.20) into (B.18), we find an equation that
is affine in ijt. Equation (B.16) follows by identifying the linear terms in ijt, and (B.17)
follows by identifying the constant terms. The initial conditions Aijj(0) = Cj(0) = 0

follow because the price of a bond with zero maturity is its face value, which is one. Since
the affine equation holds when (B.16) and (B.17) hold, our conjecture Aij′j(τ) = 0 for
j′ ̸= j is validated.

Solving (B.16) with the initial condition Aijj(0) = 0, we find

Aijj(τ) =
1− e−κ∗

ijτ

κ∗
ij

, (B.21)

with

κ∗
ij ≡ κij + ajσ

2
ij

∫ T

0

αj(τ)Aijj(τ)
2dτ. (B.22)

Substituting Aijj(τ) from (B.21) into (B.22), we find the equation

κ∗
ij − κij + ajσ

2
ij

∫ T

0

αj(τ)

(
1− e−κ∗

ijτ

κ∗
ij

)2

dτ = 0 (B.23)

in the single unknown κ∗
ij. The left-hand side of (B.23) is increasing in κ∗

ij, is negative
for κ∗

ij = κij, and goes to infinity when κ∗
ij goes to infinity. Hence, (B.23) has a unique

solution κ∗
ij > κij. Given κ∗

ij, (B.21) determines Aijj(τ) uniquely.
Solving (B.17) with the initial condition Cj(τ) = 0, we find

Cj(τ) = κ∗
iji

∗
j

∫ τ

0

Aijj(τ)dτ − 1

2
σ2
ij

∫ τ

0

Aijj(τ)
2dτ, (B.24)

with

κ∗
iji

∗
j ≡ κijij + ajσ

2
ij

∫ T

0

[ζj(τ)− αj(τ)Cj(τ)]Aijj(τ)dτ + σ2
ijAiFe1{j=F}. (B.25)
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Substituting Cj(τ) from (B.24) into (B.25), we find

i
∗
j =

κijij + ajσ
2
ij

∫ T

0
ζj(τ)Aijj(τ)dτ + σ2

ijAiFe1{j=F} +
1
2
ajσ

4
ij

∫ T

0
αj(τ)

(∫ τ

0
Aijj(τ

′)2dτ ′
)
Aijj(τ)dτ

κ∗
ij

[
1 + ajσ2

ij

∫ T

0
αj(τ)

(∫ τ

0
Aijj(τ ′)dτ ′

)
Aijj(τ)dτ

] .

(B.26)

Given i
∗
j , (B.24) determines Cj(τ) uniquely.

Proof of Proposition 4.1: The property Aije > 0 is shown in the proof of Proposition
B.2. The UIP value of Aije is AUIP

ije ≡ 1
κij

, as can be seen from (B.8) by setting ae = 0.
When ae > 0 and αe > 0, the proof of Proposition B.2 shows Aije <

1
κij

. Differentiating
(B.12) with respect to iHt and iFt, we find

∂(µet + iFt − iHt)

∂iHt

= κiHAiHe − 1 < 0,

∂(µet + iFt − iHt)

∂iFt

= −κiFAiFe + 1 > 0,

respectively.

Proof of Proposition 4.2: The properties Aijj(τ) > 0 and Aij′j = 0 for j′ ̸= j are
shown in the proof of Proposition B.3. The EH value of Aijj(τ) is AEH

ijj (τ) ≡ 1−e−κijτ

κij
,

as can be seen from (B.21) and (B.22) by setting aj = 0. When aj > 0 and αj(τ) > 0,
(B.22) implies κ∗

ij > κij and (B.21) implies Aijj(τ) < AEH
ijj (τ). Differentiating (B.20) with

respect to ijt, we find

∂
(
µ
(τ)
jt − ijt

)
∂ijt

= A′
ijj(τ) + κijAijj(τ)− 1 = (κij − κ∗

ij)Aijj(τ) < 0,

where the second step follows from (B.21).

Proof of Proposition 4.3: Consider an one-off increase in γt at time zero, and denote
by κγ the rate at which γt reverts to its mean of zero. Equation (B.11) is modified to

λejt = aeσ
2
ij [ζe + θeγt − αe (AiHeiHt − AiFeiFt + Aγeet + Ce)]Aijt(−1)1{j=F} (B.27)

and (B.12) is modified to

µet = −AiHeκiH(iH−iHt)+AiFeκiF (iF−iFt)+Aγeκγγt−(πF−πH)+
1

2
A2

iHeσ
2
iH+

1

2
A2

iFeσ
2
iF .

(B.28)

Substituting λejt from (B.27) and µet from (B.28) into (B.10), we find an equation that
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is affine in (iHt, iFt, γt). Identifying the linear terms in γt yields

κγAγe = ae(θe − αeAγe)
(
A2

iHeσ
2
iH + A2

iFeσ
2
iF

)
⇒ Aγe =

aeθe (A
2
iHeσ

2
iH + A2

iFeσ
2
iF )

κγ + aeαe (A2
iHeσ

2
iH + A2

iFeσ
2
iF )

. (B.29)

When αe > 0, (B.29) implies Aγe > 0 because θe > 0. Hence, an increase in γt causes the
foreign currency to depreciate. Since bonds in each country are traded by a separate set
of agents than those trading foreign currency, their prices do not depend on γt.

Consider next an one-off increase in βjt at time zero, and denote by κβj the rate at
which βjt reverts to its mean of zero. Equation (B.19) is modified to

λjt = ajσ
2
ij

(∫ T

0

[ζj(τ)− αj(τ) (Aijj(τ)ijt + Aβjj(τ)βjt + Cj(τ))]Aijj(τ)dτ

)
, (B.30)

and (B.20) is modified to

µ
(τ)
jt =A′

ijj(τ)ijt + A′
βjj(τ)βjt + C ′

j(τ)− Aijj(τ)κij(ij − ijt) + Aβjj(τ)κβjβjt

+
1

2
Aijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
σ2
ij. (B.31)

Substituting λjt from (B.30) and µjt from (B.31) into (B.18), we find an equation that is
affine in (ijt, βjt). Identifying the linear terms in βjt yields

A′
βjj(τ) + κβjAβjj(τ) = ajσ

2
ijAijj(τ)

∫ T

0

[θj(τ)− αj(τ)Aβjj(τ)]Aijj(τ)dτ. (B.32)

Solving (B.32) with the initial condition Aβjj(τ) = 0, we find

Aβjj(τ) = λ̄ijβj

∫ τ

0

Aijj(τ
′)e−κβj(τ−τ ′)dτ ′, (B.33)

where

λ̄ijβj ≡ ajσ
2
ij

∫ T

0

[θj(τ)− αj(τ)Aβjj(τ)]Aijj(τ)dτ. (B.34)

Substituting Aβjj(τ) from (B.33) into (B.34) and solving for λ̄ijβj , we find

λ̄ijβj =
ajσ

2
ij

∫ T

0
θj(τ)Aijj(τ)dτ

1 + ajσ2
ij

∫ T

0
αj(τ)

(∫ τ

0
Aijj(τ ′)e−κβj(τ−τ ′)dτ ′

)
Aijj(τ)dτ

. (B.35)

When aj > 0, (B.35) implies λijβj > 0 and (B.33) implies Aβjj(τ) > 0 because (θj(τ), Aijj(τ))

are positive. Hence, an increase in βjt raises bond yields in country j. Since the foreign
currency and bonds in country j′ are traded by different agents than those trading bonds
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in country j, their prices do not depend on βjt.

Proposition B.4 characterizes the equilibrium under global arbitrage and the parameter
restrictions assumed in Section 4.

Proposition B.4. Suppose that arbitrage is global, the matrices (Γ,Σ) are diagonal, and
Σ3,3 = Σ4,4 = Σ5,5 = 0. The exchange rate et is given by (3.1) and bond prices P

(τ)
jt in

country j = H,F are given by (3.2), with ({Aije}j=H,F , Ce) solving

κijAije − 1 = aσ2
ijλ̄ijjAije − aσ2

ij′λ̄ij′jAij′e, (B.36)

− κiHiHAiHe + κiF iFAiFe − (πF − πH) +
1

2
σ2
iHA

2
iHe +

1

2
σ2
iFA

2
iFe (B.37)

= aσ2
iH λ̄iHCAiHe − aσ2

iF λ̄iFCAiFe,

and (Aijj(τ), Aijj′(τ), Cj(τ)) solving

A′
ijj(τ) + κijAijj(τ)− 1 = aσ2

ijλ̄ijjAijj(τ) + aσ2
ij′λ̄ij′jAij′j(τ), (B.38)

A′
ij′j(τ) + κij′Aij′j(τ) = aσ2

ijλ̄ijj′Aijj(τ) + aσ2
ij′λ̄ij′j′Aij′j(τ), (B.39)

C ′
j(τ)− κijijAijj(τ)− κij′ij′Aij′j(τ) +

1

2
σ2
ijAijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
+

1

2
σ2
ij′Aij′j(τ)

(
Aij′j(τ) + 2AiHe1{j=F}

)
= aσ2

ijλ̄ijCAijj(τ) + aσ2
ij′λ̄ij′CAij′j(τ),

(B.40)

with the initial conditions Aijj(0) = Aijj′(0) = Cj(0) = 0, where j′ ̸= j and

λ̄ijj ≡ −αeA
2
ije −

∑
k=H,F

∫ T

0

αk(τ)Aijk(τ)
2dτ, (B.41)

λ̄ijj′ ≡ αeAijeAij′e −
∑

k=H,F

∫ T

0

αk(τ)Aijk(τ)Aij′k(τ)dτ, (B.42)

λ̄ijC ≡ (ζe − αeCe)Aije(−1)1{j=F} +
∑

k=H,F

∫ T

0

(ζk(τ)− αk(τ)Ck(τ))Aijk(τ)dτ.

(B.43)

Proof of Proposition B.4: The first-order conditions are (3.10) and (3.11), with Ae ≡
(AiHe,−AiFe), Aj(τ) ≡ (AiHj(τ), AiF j(τ)) and λt ≡ (λiHt, λiF t) with

λijt ≡ aσ2
ij

(
WFtAije(−1)1{j=F} +

∑
j′=H,F

∫ T

0

X
(τ)
j′t Aijj′(τ)dτ

)
. (B.44)

They follow from (3.10) and (3.11) by taking Σ to be diagonal with Σ3,3 = Σ4,4 = Σ5,5 = 0.
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Proceeding as in the derivation of (3.16) and using γt = βHt = βFt = 0, we find

λijt = aσ2
ij

(
[ζe − αe (AiHeiHt − AiFeiFt + Ce)]Aije(−1)1{j=F}

+
∑

j′=H,F

∫ T

0

[ζj′(τ)− αj′(τ) (AiHj′(τ)iHt + AiF j′(τ)iFt + Cj′(τ))]Aijj′(τ)dτ

)
≡ aσ2

ij

(
λ̄ijjijt + λ̄ijj′ij′t + λ̄ijC

)
. (B.45)

Since (Γ,Σ) are diagonal with Σ3,3 = Σ4,4 = Σ5,5 = 0 and βHt = βFt = γt = 0, we can
write (3.7) and (3.8) as

µ
(τ)
jt ≡A′

iHj(τ)iHt + A′
iF j(τ)iFt + C ′

j(τ)− AiHj(τ)κiH(iH − iHt)− AiF j(τ)κiF (iF − iFt)

+
1

2
AiHj(τ)

(
AiHj(τ) + 2AiHe1{j=F}

)
σ2
iH +

1

2
AiF j(τ)

(
AiF j(τ)− 1{j=F}2AiFe

)
σ2
iF .

(B.46)

Substituting λt from (B.45) and µet from (B.12) into (3.10) (for the definitions of (Ae, λt)

in Section 4.2), we find an equation that is affine in (iHt, iFt). Equation (B.36) follows by
identifying the linear terms in (iHt, iFt), and (B.37) follows by identifying the constant
terms. Substituting λt from (B.45) and µ

(τ)
jt from (B.46) into (3.11) (for the definitions

of (Aj(τ), λt) in Section 4.2), we find an equation that is affine in (iHt, iFt). Equations
(B.38) and (B.39) follow by identifying the linear terms in (iHt, iFt), and (B.40) follows
by identifying the constant terms. The initial conditions Aijj(0) = Aijj′(0) = Cj(0) = 0

follow because the price of a bond with zero maturity is its face value, which is one.
Solving the system of (B.36)-(B.43) reduces to solving a system of three nonlinear

scalar equations. Indeed, taking λ̄iHH , λ̄iHF = λ̄iFH and λ̄iFF as given, we can solve the
system (B.36) of two scalar equations in (AiHe, AiFe), the system (B.38) and (B.39) of
two linear ODEs in (AiHH(τ), AiFH(τ)) (setting (j, j ′) = (H,F )), and the same system
(B.38) and (B.39) of two linear ODEs in (AiHF (τ), AiFF (τ)) (setting (j, j ′) = (F,H)). We
can then substitute back into the definitions of λ̄iHH , λ̄iHF = λ̄iFH and λ̄iFF to derive
the system of three nonlinear scalar equations. Given a solution of that system, (B.40)
determines (CH(τ), CF (τ)) uniquely, and (B.37) determines Ce uniquely if αe > 0. If
αe = 0, then a parameter restriction analogous to (B.15) must be imposed and Ce is
indeterminate. The results in Section 4.2 hold for any solution λ̄iHH , λ̄iHF = λ̄iFH and
λ̄iFF .

Proof of Proposition 4.4: We start by proving a series of lemmas.
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Lemma B.1. The matrix

Mi ≡

(
κiH − aσ2

iH λ̄iHH −aσ2
iF λ̄iFH

−aσ2
iH λ̄iHF κiF − aσ2

iF λ̄iFF

)
(B.47)

has two positive eigenvalues.

Proof: The characteristic polynomial of Mi is

Π(λ) ≡
(
κiH − aσ2

iH λ̄iHH − λ
) (

κiF − aσ2
iF λ̄iFF − λ

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH . (B.48)

For λ = 0, Π(λ) takes the value

Π(0) =
(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− aσ2

iHσ
2
iF λ̄iHF λ̄iFH

> a2σ2
iHσ

2
iH

(
λ̄iHH λ̄iFF − λ̄iHF λ̄iFH

)
= a2σ2

iHσ
2
iH

[(
αeA

2
iHe +

∫ T

0

αH(τ)AiHH(τ)
2dτ +

∫ T

0

αF (τ)AiHF (τ)
2dτ

)
×
(
αeA

2
iFe +

∫ T

0

αH(τ)AiFH(τ)
2dτ +

∫ T

0

αF (τ)AiFF (τ)
2dτ

)
−
(
αeAiHeAiFe −

∫ T

0

αH(τ)AiHH(τ)AiFH(τ)dτ +

∫ T

0

αF (τ)AiHF (τ)AiFF (τ)dτ

)2
]
.

(B.49)

The second step in (B.49) follows because (κiH , κiF ) are positive and because (B.41)
implies that (λ̄iHH , λ̄iFF ) are non-positive. The third step in (B.49) follows from (B.41)
and (B.42). The Cauchy-Schwarz inequality associated to the scalar product

X · Y ≡ αexy +

∫ T

0

αH(τ)XH(τ)YH(τ)dτ +

∫ T

0

αF (τ)XF (τ)YF (τ)dτ

where X ≡ (x,XH(τ), XF (τ)), Y ≡ (y, YH(τ), YF (τ)), (x, y) are scalars, and (XH(τ), XF (τ),

YH(τ), YF (τ)) are functions of τ , implies that (B.49) is non-negative. Hence, Π(0) > 0.
For λ = κiH−aσ2

iH λ̄iHH and λ = κiF−aσ2
iF λ̄iFF , Π(λ) takes the value −a2σ2

iHσ
2
iF λ̄iHF λ̄iFH ,

which is non-positive because (B.42) implies λ̄iHF = λ̄iFH . Since (κiH , κiF ) are positive
and (λ̄iHH , λ̄iFF ) are non-positive, κiH − aσ2

iH λ̄iHH and λ = κiF − aσ2
iF λ̄iFF are positive.

Since Π(λ) is a quadratic function of λ, is positive for λ = 0, is non-positive for two
positive values of λ, and goes to infinity when λ goes to infinity, it has two positive roots.

The matrix Mi plays an important role in the determination of (AiHe, AiFe) and
(AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)). Equation (B.36) gives rise to the linear system
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Mi

(
AiHe

AiFe

)
=

(
1

1

)
. (B.50)

Since Mi has two positive eigenvalues, it is invertible, and hence (B.50) can be solved for
(AiHe, AiFe). Equations (B.38) and (B.39) give rise to the linear system(

AiHH(τ)

AiFH(τ)

)′

+Mi

(
AiHH(τ)

AiFH(τ)

)
=

(
1

0

)
(B.51)

for (j, j ′) = (H,F ), and to(
AiHF (τ)

AiFF (τ)

)′

+Mi

(
AiHF (τ)

AiFF (τ)

)
=

(
0

1

)
(B.52)

for (j, j ′) = (F,H). Since Mi has two positive eigenvalues, the solutions (AiHH(τ), AiFH(τ))

to (B.51) and (AiHF (τ), AiFF (τ)) to (B.52) go to finite limits when τ goes to infinity.

Lemma B.2. The normalized factor prices λ̄iHF = λ̄iFH are non-negative.

Proof: Suppose, proceeding by contradiction, that λ̄iHF = λ̄iFH are negative. The
solution to (B.50) is

AiHe =
κiF − aσ2

iF (λ̄iFF + λ̄iFH)(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH

, (B.53)

AiFe =
κiH − aσ2

iH(λ̄iHH + λ̄iHF )(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH

. (B.54)

The denominator in (B.53) and (B.54) is Π(0) > 0. The numerators in (B.53) and
(B.54) are positive because (κiH , κiF ) are positive and (aλ̄iHH , aλ̄iFF , aλ̄iHF , aλ̄iFH) are
non-positive. Hence, (AiHe, AiFe) are positive.

When a = 0, (B.39) with the initial conditions AiHF (0) = AiFH(0) = 0 implies
AiHF (τ) = AiFH(τ) = 0 for all τ > 0. Since, in addition, AiHe > 0 and AiFe > 0, (B.42)
implies λ̄iHF = λ̄iFH ≥ 0, a contradiction.

When a > 0, (B.38) and (B.39) with the initial conditions AiHH(0) = AiFF (0) =

AiHF (0) = AiFH(0) = 0 imply A′
iHH(0) = A′

iFF (0) = 1 and A′
iHF (0) = A′

iFH(0) = 0.
Moreover, differentiating (B.39), we find A′′

iFH(0) = aσ2
iH λ̄iHFA

′
iHH(0) < 0 and A′′

iHF (0) =

aσ2
iF λ̄iFHA

′
iFF (0) < 0. Hence, AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) < 0 and AiFH(τ) < 0

for τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{AiHH(τ

′) > 0, AiFF (τ
′) > 0, AiHF (τ

′) < 0 and AiFH(τ
′) < 0 for all τ ′ ∈ (0, τ)}.
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If τ0 is finite, then (i) AiHH(τ0) = 0, A′
iHH(τ0) ≤ 0, AiFF (τ0) ≥ 0, AiHF (τ0) ≤ 0 and

AiFH(τ0) ≤ 0, or (ii) AiHH(τ0) > 0, AiFF (τ0) = 0, A′
iFF (τ0) ≤ 0, AiHF (τ0) ≤ 0 and

AiFH(τ0) ≤ 0, or (iii) AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) = 0, A′
iHF (τ0) ≥ 0

and AiFH(τ0) ≤ 0, or (iv) AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) < 0, AiFH(τ0) = 0

and A′
iFH(τ0) ≥ 0. Case (i) yields a contradiction because (B.38) for (j, j ′) = (H,F ),

AiHH(τ0) = 0, AiFH(τ0) ≤ 0 and λ̄iFH < 0 imply A′
iHH(τ0) ≥ 1. Case (ii) yields a con-

tradiction by using the same argument as in Case (i) and switching H and F . Case (iii)
yields a contradiction because (B.39) for (j, j ′) = (H,F ), AiHH(τ0) > 0, AiFH(τ0) = 0

and λ̄iHF < 0 imply A′
iFH(τ0) < 0. Case (iv) yields a contradiction by using the same

argument as in Case (iii) and switching H and F . Therefore, τ0 is infinite, which means
AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) < 0 and AiFH(τ) < 0 for all τ > 0. Since, in addi-
tion, AiHe > 0 and AiFe > 0, (B.42) implies λ̄iHF = λ̄iFH ≥ 0, a contradiction. Therefore,
λ̄iHF = λ̄iFH are non-negative.

Lemma B.3. The functions AiHH(τ) and AiFF (τ) are positive for all τ > 0.

• When a > 0 and αe > 0, the functions AiHF (τ) and AiFH(τ) are positive for all
τ > 0.

• When a = 0 or αe = 0, the functions AiHF (τ) and AiFH(τ) are zero.

Proof: Consider first the case a > 0 and αe > 0. If λ̄iHF = λ̄iFH = 0, then (B.39)
with the initial conditions AiHF (0) = AiFH(0) = 0 implies AiHF (τ) = AiFH(τ) = 0 for all
τ > 0. Since, in addition, (B.53) and (B.54) imply AiHe > 0 and AiFe > 0, (B.42) implies
λ̄iHF = λ̄iFH > 0, a contradiction. Hence, Lemma B.2 implies λ̄iHF = λ̄iFH > 0.

Equations (B.38) and (B.39) with the initial conditions AiHH(0) = AiFF (0) = AiHF (0) =

AiFH(0) = 0 imply A′
iHH(0) = A′

iFF (0) = 1 and A′
iHF (0) = A′

iFH(0) = 0. More-
over, differentiating (B.39), we find A′′

iFH(0) = aσ2
iH λ̄iHFA

′
iHH(0) > 0 and A′′

iHF (0) =

aσ2
iF λ̄iFHA

′
iFF (0) > 0. Hence, AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) > 0 and AiFH(τ) > 0

for τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{AiHH(τ

′) > 0, AiFF (τ
′) > 0, AiHF (τ

′) > 0 and AiFH(τ
′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) AiHH(τ0) = 0, A′
iHH(τ0) ≤ 0, AiFF (τ0) ≥ 0, AiHF (τ0) ≥ 0 and

AiFH(τ0) ≥ 0, or (ii) AiHH(τ0) > 0, AiFF (τ0) = 0, A′
iFF (τ0) ≤ 0, AiHF (τ0) ≥ 0 and

AiFH(τ0) ≥ 0, or (iii) AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) = 0, A′
iHF (τ0) ≤ 0

and AiFH(τ0) ≥ 0, or (iv) AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) > 0, AiFH(τ0) = 0

and A′
iFH(τ0) ≤ 0. Case (i) yields a contradiction because (B.38) for (j, j ′) = (H,F ),

AiHH(τ0) = 0, AiFH(τ0) ≥ 0 and λ̄iFH > 0 imply A′
iHH(τ0) ≥ 1. Case (ii) yields a con-

tradiction by using the same argument as in Case (i) and switching H and F . Case (iii)
yields a contradiction because (B.39) for (j, j ′) = (H,F ), AiHH(τ0) > 0, AiFH(τ0) = 0
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and λ̄iHF > 0 imply A′
iFH(τ0) > 0. Case (iv) yields a contradiction by using the same

argument as in Case (iii) and switching H and F . Therefore, τ0 is infinite, which means
AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) > 0 and AiFH(τ) > 0 for all τ > 0.

Consider next the case a = 0. The properties of (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ))

follow because (B.38) with the initial conditions AiHH(0) = AiFF (0) = 0 implies AiHH(τ) =

AEH
iHH(τ) ≡ 1−e−κiHτ

κiH
> 0 and AiFF (τ) = AEH

iFF (τ) ≡ 1−e−κiF τ

κiF
> 0, and (B.39) with the

initial conditions AiHF (0) = AiFH(0) = 0 implies AiHF (τ) = AiFH(τ) = 0.
Consider finally the case a > 0 and αe = 0. Suppose, proceeding by contradiction,

that λ̄iHF = λ̄iFH are positive. The argument in the case a > 0 and αe > 0 implies that
(AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) are positive for all τ > 0. Since αe = 0, (B.42)
implies λ̄iHF = λ̄iFH ≤ 0, a contradiction. Hence, Lemma B.2 implies λ̄iHF = λ̄iFH = 0.
Since λ̄iHF = λ̄iFH = 0, (B.39) with the initial conditions AiHF (0) = AiFH(0) = 0 implies
AiHF (τ) = AiFH(τ) = 0. Since AiHF (τ) = AiFH(τ) = 0, (B.38) with the initial conditions
AiHH(0) = AiFF (0) = 0 implies that (AiHH(τ), AiFF (τ)) are positive for all τ > 0.

Lemma B.4. The functions AiHH(τ) and AiFF (τ) are increasing. When a > 0 and
αe > 0, the functions AiHF (τ) and AiFH(τ) are also increasing.

Proof: Consider first the case a > 0 and αe > 0. Equations A′
iHH(0) = A′

iFF (0) = 1,
A′

iHF (0) = A′
iFH(0) = 0, A′′

iFH(0) = aσ2
iH λ̄iHFA

′
iHH(0) > 0 and A′′

iHF (0) = aσ2
iF λ̄iFHA

′
iFF (0) >

0 imply A′
iHH(τ) > 0, A′

iFF (τ) > 0, A′
iHF (τ) > 0 and A′

iFH(τ) > 0 for τ close to zero. We
define τ0 by

τ0 ≡ sup
τ
{A′

iHH(τ
′) > 0, A′

iFF (τ
′) > 0, A′

iHF (τ
′) > 0 and A′

iFH(τ
′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) A′
iHH(τ0) = 0, A′′

iHH(τ0) ≤ 0, A′
iFF (τ0) ≥ 0, A′

iHF (τ0) ≥ 0 and
A′

iFH(τ0) ≥ 0, or (ii) A′
iHH(τ0) > 0, A′

iFF (τ0) = 0, A′′
iFF (τ0) ≤ 0, A′

iHF (τ0) ≥ 0 and
AiFH(τ0)

′ ≥ 0, or (iii) A′
iHH(τ0) > 0, A′

iFF (τ0) > 0, A′
iHF (τ0) = 0, A′′

iHF (τ0) ≤ 0 and
A′

iFH(τ0) ≥ 0, or (iv) A′
iHH(τ0) > 0, A′

iFF (τ0) > 0, A′
iHF (τ0) > 0, A′

iFH(τ0) = 0 and
A′′

iFH(τ0) ≤ 0. To analyze Cases (i)-(iv), we use

A′′
ijj(τ) + κijA

′
ijj(τ) = aσ2

ijλ̄ijjA
′
ijj(τ) + aσ2

ij′λ̄ij′jA
′
ij′j(τ), (B.55)

A′′
ij′j(τ) + κij′A

′
ij′j(τ) = aσ2

ijλ̄ijj′A
′
ijj(τ) + aσ2

ij′λ̄ij′j′A
′
ij′j(τ), (B.56)

which follow from differentiating (B.38) and (B.39), respectively.
Case (i) yields a contradiction. Indeed, if A′′

iHH(τ0) = 0, then (B.55) for (j, j ′) =

(H,F ), A′
iHH(τ0) = 0 and λ̄iFH > 0 imply A′

iFH(τ0) = 0. The unique solution to the
linear system of ODEs (B.55) and (B.56) for (j, j ′) = (H,F ) with the initial condition
(A′

iHH(τ0), A
′
iFH(τ0)) = (0, 0) is the function that equals (0,0) for all τ . This yields a

contradiction because (A′
iHH(0), A

′
iFH(0)) = (1, 0). Hence, A′′

iHH(τ0) < 0, which combined
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with (B.55) for (j, j ′) = (H,F ), A′
iHH(τ0) = 0 and λ̄iFH > 0 implies A′

iFH(τ0) < 0,
again a contradiction. Case (ii) yields a contradiction by using the same argument as
in Case (i) and switching H and F . Case (iii) yields a contradiction because (B.56) for
(j, j ′) = (H,F ), A′

iHH(τ0) > 0, A′
iFH(τ0) = 0 and λ̄iHF > 0 imply A′′

iFH(τ0) > 0. Case
(iv) yields a contradiction by using the same argument as in Case (iii) and switching H

and F . Therefore, τ0 is infinite, which means that (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ))

are increasing.
In the case a = 0 or αe = 0, Lemma B.3 implies AiHF (τ) = AiFH(τ) = 0. Since

AiHF (τ) = AiFH(τ) = 0, (B.38) with the initial conditions AiHH(0) = AiFF (0) = 0

implies that AiHH(τ) and AiFF (τ) are increasing.

Lemma B.5. The scalars AiHe and AiFe are positive.

Proof: Consider first the case a > 0 and αe > 0. Since λ̄iHF = λ̄iFH > 0 and AiHH(τ) >

0, AiFF (τ) > 0, AiHF (τ) > 0 and AiFH(τ) > 0 for all τ > 0 (Lemma B.3), (B.42) implies
AiHeAiFe > 0. Hence, (AiHe, AiFe) are either both positive or both negative. Suppose,
proceeding by contradiction, that they are both negative. Equations (B.53) and (B.54)
imply

κiH − aσ2
iH λ̄iHH < aσ2

iH λ̄iHF , (B.57)
κiF − aσ2

iF λ̄iFF < aσ2
iF λ̄iFH . (B.58)

Since the left-hand side in each of (B.57) and (B.58) is positive, (B.57) and (B.58) imply

Π(0) =
(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− aσ2

iHσ
2
iF λ̄iHF λ̄iFH < 0,

a contradiction. Hence, (AiHe, AiFe) are positive.
Consider next the case a = 0. Equation (B.36) implies AiHe = AUIP

iHe ≡ 1
κHj

> 0 and
AiFe = AUIP

iFe ≡ 1
κFj

> 0. Consider finally the case αe = 0 and a > 0. Since λ̄iHF =

λ̄iFH = 0 and (λ̄iHH , λ̄iFF ) are non-positive, (B.53) and (B.54) imply that (AiHe, AiFe)

are positive.

Lemma B.6. The functions AiHH(τ)−AiHF (τ) and AiFF (τ)−AiFH(τ) are positive for
all τ > 0.

Proof: In the case a = 0 or αe = 0, the lemma follows from Lemma B.3. To prove
the lemma in the case a > 0 and αe > 0, we proceed in two steps. In Step 1, we show
that AiHH(τ)−AiHF (τ) and AiFF (τ)−AiFH(τ) are positive in the limit when τ goes to
infinity. In Step 2, we show that AiHH(τ) − AiHF (τ) and AiFF (τ) − AiFH(τ) are either
increasing in τ , or increasing and then decreasing. The lemma follows by combining these
properties with AiHH(0)− AiHF (0) = AiFF (0)− AiFH(0) = 0.
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Step 1: Limit at infinity. Since the matrix M has two positive eigenvalues, the
functions (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) go to finite limits when τ goes to infinity.
These limits solve the system of equations

κijAijj(∞)− 1 = aσ2
ijλ̄ijjAijj(∞) + aσ2

ij′λ̄ij′jAij′j(∞), (B.59)
κij′Aij′j(∞) = aσ2

ijλ̄ijj′Aijj(∞) + aσ2
ij′λ̄ij′j′Aij′j(∞), (B.60)

which are derived from (B.38) and (B.39) by setting the derivatives to zero. Subtracting
(B.60) for (j, j ′) = (F,H) from (B.59) for (j, j ′) = (H,F ), we find

κiH(AiHH(∞)− AiHF (∞))− 1

= aσ2
iH λ̄iHH(AiHH(∞)− AiHF (∞)) + aσ2

iF λ̄iFH(AiFH(∞)− AiFF (∞)). (B.61)

Subtracting (B.60) for (j, j ′) = (H,F ) from (B.59) for (j, j ′) = (F,H), we similarly find

κiF (AiFF (∞)− AiFH(∞))− 1

= aσ2
iH λ̄iHF (AiHF (∞)− AiHH(∞)) + aσ2

iF λ̄iFF (AiFF (∞)− AiFH(∞)). (B.62)

The solution to the system of (B.61) and (B.62) is

AiHH(∞)− AiHF (∞) =
κiF − aσ2

iF (λ̄iFF + λ̄iFH)(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH

= AiHe,

(B.63)

AiFF (∞)− AiFH(∞) =
κiH − aσ2

iH(λ̄iHH + λ̄iHF )(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH

= AiFe,

(B.64)

where the second equality in (B.63) and (B.64) follows from (B.53) and (B.54), respec-
tively. Since (AiHe, AiFe) are positive (Lemma B.5), so are (AiHH(∞)−AiHF (∞), AiFF (∞)−
AiFH(∞)).

Step 2: Monotonicity. Equations (B.38) and (B.39) with the initial conditions
AiHH(0) = AiFF (0) = AiHF (0) = AiFH(0) = 0 imply A′

iHH(0) = A′
iFF (0) = 1 > 0 and

A′
iHF (0) = A′

iFH(0) = 0. Hence, A′
iHH(τ)− A′

iHF (τ) > 0 and A′
iFF (τ)− A′

iFH(τ) > 0 for
τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{A′

iHH(τ
′)−A′

iHF (τ
′) > 0 and A′

iFF (τ
′)−A′

iFH(τ
′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is infinity, then AiHH(τ)−AiHF (τ) and AiFF (τ)−AiFH(τ) are increasing in τ . Suppose
instead that τ0 is finite. Then, either (i) A′

iHH(τ0)−A′
iHF (τ0) = 0, A′′

iHH(τ0)−A′′
iHF (τ0) ≤ 0

and A′
iFF (τ0) − A′

iFH(τ0) ≥ 0, or (ii) A′
iHH(τ0) − A′

iHF (τ0) > 0, A′
iFF (τ0) − A′

iFH(τ0) = 0
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and A′′
iFF (τ0)− A′′

iFH(τ0) ≤ 0. To analyze Cases (i) and (ii), we use

A′
iHH(τ)− A′

iHF (τ) + κiH(AiHH(τ)− AiHF (τ))− 1

= aσ2
iH λ̄iHH(AiHH(τ)− AiHF (τ)) + aσ2

iF λ̄iFH(AiFH(τ)− AiFF (τ)), (B.65)

which follows by subtracting (B.39) for (j, j ′) = (F,H) from (B.59) for (j, j ′) = (H,F ),
and

A′
iFF (τ)− A′

iFH(τ) + κiF (AiFF (τ)− AiFH(τ))− 1

= aσ2
iH λ̄iHF (AiHF (τ)− AiHH(τ)) + aσ2

iF λ̄iFF (AiFF (τ)− AiFH(τ)), (B.66)

which follows by subtracting (B.60) for (j, j ′) = (H,F ) from (B.59) for (j, j ′) = (F,H).
Differentiating (B.65) and (B.66), we find

A′′
iHH(τ)− A′′

iHF (τ) + κiH(A
′
iHH(τ)− A′

iHF (τ))

= aσ2
iH λ̄iHH(A

′
iHH(τ)− A′

iHF (τ)) + aσ2
iF λ̄iFH(A

′
iFH(τ)− A′

iFF (τ)) (B.67)

and

A′′
iFF (τ)− A′′

iFH(τ) + κiF (A
′
iFF (τ)− A′

iFH(τ))

= aσ2
iH λ̄iHF (A

′
iHF (τ)− A′

iHH(τ)) + aσ2
iF λ̄iFF (A

′
iFF (τ)− A′

iFH(τ)), (B.68)

respectively. Equations (B.67) and (B.68) are a linear system of ODEs in the functions
(A′

iHH(τ)− A′
iHF (τ), A

′
iFF (τ)− A′

iFH(τ)).
Consider first Case (i). If A′′

iHH(τ0)−A′′
iHF (τ0) = 0, then (B.67), A′

iHH(τ0)−A′
iHF (τ0) =

0 and λ̄iFH > 0 imply A′
iFF (τ0)−A′

iFH(τ0) = 0. The unique solution to the linear system
of ODEs (B.67) and (B.68) with the initial condition (A′

iHH(τ0) − A′
iHF (τ0), A

′
iFF (τ0) −

A′
iFH(τ0)) = (0, 0) is the function that equals (0,0) for all τ . This yields a contradiction

because (A′
iHH(0)−A′

iHF (0), A
′
iFF (0)−A′

iFH(0)) = (1, 1). Hence, A′′
iHH(τ0)−A′′

iHF (τ0) < 0,
which combined with (B.67), A′

iHH(τ0)− A′
iHF (τ0) = 0 and λ̄iFH > 0 implies A′

iFF (τ0)−
A′

iFH(τ0) > 0. Since A′
iHH(τ0) − A′

iHF (τ0) = 0 and A′′
iHH(τ0) − A′′

iHF (τ0) < 0, A′
iHH(τ) −

A′
iHF (τ) < 0 for τ larger than and close to τ0. We define τ ′0 by

τ ′0 ≡ sup
τ
{A′

iHH(τ
′)−A′

iHF (τ
′) < 0 and A′

iFF (τ
′)−A′

iFH(τ
′) > 0 for all τ ′ ∈ (τ0, τ)}.

If τ ′0 is finite, then either (ia) A′
iHH(τ0) − A′

iHF (τ0) = 0, A′′
iHH(τ0) − A′′

iHF (τ0) ≥ 0 and
A′

iFF (τ0)− A′
iFH(τ0) ≥ 0, or (ib) A′

iHH(τ0)− A′
iHF (τ0) < 0, A′

iFF (τ0)− A′
iFH(τ0) = 0 and

A′′
iFF (τ0) − A′′

iFH(τ0) ≤ 0. In Case (ia), the same argument as for τ0 implies A′′
iHH(τ

′
0) −

A′′
iHF (τ

′
0) > 0, which combined with (B.67), A′

iHH(τ0) − A′
iHF (τ0) = 0 and λ̄iFH > 0

implies A′
iFF (τ

′
0)−A′

iFH(τ
′
0) < 0, a contradiction. In Case (ib), the same argument as for
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τ0 implies A′′
iFF (τ

′
0)−A′′

iFH(τ
′
0) < 0, which combined with (B.68), A′

iFF (τ0)−A′
iFH(τ0) = 0

and λ̄iHF > 0 implies A′
iHH(τ

′
0)− A′

iHF (τ
′
0) > 0, a contradiction. Therefore, τ ′0 is infinite,

which means that AiFF (τ)−AiFH(τ) is increasing, and AiHH(τ)−AiHF (τ) is increasing
in (0, τ0) and decreasing in (τ0,∞).

Consider next Case (ii). A symmetric argument by switching H and F implies that
AiHH(τ) − AiHF (τ) is increasing, and AiFF (τ) − AiFH(τ) is increasing in (0, τ0) and de-
creasing in (τ0,∞).

Using Lemmas B.1-B.6, we next prove the proposition. Since (AiHe, AiFe) are positive
(Lemma B.5), (3.1) implies ∂et

∂iHt
< 0 and ∂et

∂iFt
> 0. When a > 0 and αe > 0, (B.41) implies

that (λ̄iHH , λ̄iFF ) are negative, and the proof of Lemma B.3 implies that (λ̄iHF , λ̄iFH) are
positive. Hence,

aσ2
iH λ̄iHHAiHe − aσ2

iF λ̄iFHAiFe < 0, (B.69)
aσ2

iF λ̄iFFAiFe − aσ2
iH λ̄iHFAiHe < 0. (B.70)

Equations (B.69) and (B.70) also hold when a > 0, αe = 0 and (αH(τ), αF (τ)) are
positive. This is because (B.41) again implies that (λ̄iHH , λ̄iFF ) are negative, and the
proof of Lemma B.3 implies λ̄iHF = λ̄iFH = 0. Combining (B.69) and (B.70) with (B.36),
we find AiHe <

1
κiH

≡ AUIP
iHe and AiFe <

1
κiF

≡ AUIP
iFe . Combining (B.69) and (B.70) with

(3.10) (for the definitions of (Ae, λt) in Section 4.2) and (B.45), we find ∂(µet+iFt−iHt)
∂iHt

< 0

and ∂(µet+iFt−iHt)
∂iFt

> 0. This establishes the first bullet point of the proposition.
Since (AiHH(τ), AiFF (τ)) are positive for all τ > 0 (Lemma B.3), (2.1) and (3.2)

imply that (
∂y

(τ)
Ht

∂iHt
,
∂y

(τ)
Ft

∂iFt
) are positive. When a > 0 and αe > 0, Lemma B.3 implies that

(AiHF (τ), AiFH(τ)) are positive for all τ > 0, and Lemma B.4 implies that (AiHF (τ), AiFH(τ))

are increasing. Equation (B.39) for (j, j ′) = (H,F ) implies

aσ2
iH λ̄iHFAiHH(τ) + aσ2

iF λ̄iFFAiFH(τ) > 0. (B.71)

Multiplying both sides of (B.71) by λ̄iHH

λ̄iHF
< 0, we find

aσ2
iH λ̄iHHAiHH(τ) + aσ2

iF

λ̄iHH λ̄iFF

λ̄iHF

AiFH(τ) < 0

⇒ aσ2
iH λ̄iHHAiHH(τ) + aσ2

iF λ̄iFHAiFH(τ) < 0, (B.72)

where the second step follows from AiFH(τ) > 0 and from the inequality λ̄iHH λ̄iFF −
λ̄iHF λ̄iFH < 0 established in the proof of Lemma B.1. We likewise find

aσ2
iF λ̄iFHAiFF (τ) + aσ2

iH λ̄iHHAiHF (τ) > 0, (B.73)
⇒ aσ2

iF λ̄iFFAiFF (τ) + aσ2
iH λ̄iHFAiHF (τ) < 0, (B.74)
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by switching H and F . Equations (B.72) and (B.74) hold also when a > 0, αe = 0 and
(αH(τ), αF (τ)) are positive. Indeed, the proof of Lemma B.3 implies λ̄iHF = λ̄iFH = 0,
and since (AiHH(τ), AiFF (τ)) are positive, (B.41) implies that (λ̄iHH , λ̄iFF ) are negative.
Combining (B.72) and (B.74) with (B.38), we find AiHH(τ) < 1−e−κiHτ

κiH
≡ AEH

iHH(τ) and
AiFF (τ) <

1−e−κiF τ

κiF
≡ AEH

iFF (τ). Combining (B.72) and (B.74) with (3.11) (for the defini-

tions of (Aj(τ), λt) in Section 4.2) and (B.45), we find
∂
(
µ
(τ)
Ht−iHt

)
∂iHt

< 0 and
∂
(
µ
(τ)
Ft −iFt

)
∂iFt

< 0.
This establishes the second bullet point of the proposition.

When a > 0 and αe > 0, (AiHF (τ), AiFH(τ)) are positive for all τ > 0, and hence (2.1)
and (3.2) imply that (

∂y
(τ)
Ht

∂iFt
,
∂y

(τ)
Ft

∂iHt
) are positive. Moreover, combining (B.71) and (B.73)

with (3.11) and (B.45), we find
∂
(
µ
(τ)
Ht−iHt

)
∂iFt

> 0 and
∂
(
µ
(τ)
Ft −iFt

)
∂iHt

> 0. This establishes the
third bullet point of the proposition. The fourth bullet point follows from Lemma B.6,
(2.1) and (3.2).

Proof of Proposition 4.5: Combining (3.10) and (3.11) (for the definitions of (Ae, Aj(τ), λt)

in Section 4.2) with (4.2), we can write the expected return of the hybrid CCT as

µ
(τ)
hCCTt ≡ λiHt(AiHe +AiFH(τ)−AiHH(τ))−λiF t(AiFe +AiHF (τ)−AiFF (τ)). (B.75)

Using (B.45), we find

∂µ
(τ)
hCCTt

∂iHt

= aσ2
iH λ̄iHH(AiHe + AiHF (τ)− AiHH(τ))− aσ2

iF λ̄iFH(AiFe + AiFH(τ)− AiFF (τ)),

(B.76)

∂µ
(τ)
hCCTt

∂iFt

= aσ2
iH λ̄iHF (AiHe + AiHF (τ)− AiHH(τ))− aσ2

iF λ̄iFF (AiFe + AiFH(τ)− AiFF (τ)).

(B.77)

When a > 0, and αe > 0 or αj(τ) > 0, (λ̄iHH , λ̄iFF ) are negative. Since, in addi-
tion, (λ̄iHF , λ̄iFH) are non-negative, (AiHe, AiFe) are positive and AiHH(0) − AiHF (0) =

AiFF (0)−AiFH(0) = 0, (B.76) and (B.77) imply that there exists a threshold τ ∗ > 0 such
that ∂µ

(τ)
hCCTt

∂iHt
< 0 and ∂µ

(τ)
hCCTt

∂iFt
> 0 for all τ ∈ (0, τ ∗). Since at least one of (AiHH(τ) −

AiHF (τ), AiFF (τ) − AiFH(τ)) is increasing (proof of Lemma B.4), they are both increas-
ing when countries are symmetric. Since, in addition, (AiHH(∞)−AiHF (∞), AiFF (∞)−
AiFH(∞)) = (AiHe, AiFe) (proof of Lemma B.6), (B.76) and (B.77) imply that when
countries are symmetric, ∂µ

(τ)
hCCTt

∂iHt
< 0 and ∂µ

(τ)
hCCTt

∂iFt
> 0 for all τ > 0, which means τ ∗ = ∞.

Combining

µCCTt ≡ µet + iFt − iHt = λiHtAiHe − λiF tAiFe,

which gives the expected return of the basic CCT and follows from (3.10) (for the defini-
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tions of (Ae, λt) in Section 4.2), with (B.45), (B.76) and (B.77), we find

∂
(
µ
(τ)
hCCTt − µCCTt

)
∂iHt

= λ̄iHH(AiHF (τ)− AiHH(τ))− λ̄iHF (AiFH(τ)− AiFF (τ)) > 0,

(B.78)

∂
(
µ
(τ)
hCCTt − µCCTt

)
∂iFt

= λ̄iFH(AiHF (τ)− AiHH(τ))− λ̄iFF (AiFH(τ)− AiFF (τ)) < 0,

(B.79)

where the inequalities follow because (λ̄iHH , λ̄iFF ) are negative, (λ̄iHF , λ̄iFH) are non-
negative, and (AiHH(τ)−AiHF (τ), AiFF (τ)−AiFH(τ)) are positive for all τ > 0 (Lemma
B.6). Hence, the sensitivity of the hybrid CCT’s expected return to (iHt, iFt) is smaller
(less negative in the case of iHt and less positive in the case of iFt) than for the basic
CCT. Since (AiHH(∞) − AiHF (∞), AiFF (∞) − AiFH(∞)) = (AiHe, AiFe), (B.75) implies
that µ

(τ)
hCCTt goes to zero when τ goes to infinity.

Using (3.1), (3.2), (4.3) and γt = βHt = βFt = 0, we can write the return of the
long-horizon CCT as

AiHeiHt − AiFeiFt + Ce + (πF − πH)t− (AiHeiH,t+τ − AiFeiF,t+τ + Ce + (πF − πH)(t+ τ))

+ AiFF (τ)iFt + AiHF (τ)iHt + CF (τ)− (AiHH(τ)iHt + AiFH(τ)iFt + CH(τ)) .

Hence, (4.1) implies that the annualized expected return of the long-horizon CCT is

µ
(τ)
ℓCCTt ≡

1

τ

[
AiHe(1− e−κiHτ )(iHt − iH)− AiFe(1− e−κiF τ )(iFt − iF )− (πF − πH)τ

+ AiFF (τ)iFt + AiHF (τ)iHt + CF (τ)− (AiHH(τ)iHt + AiFH(τ)iFt + CH(τ))
]
,

(B.80)

and its sensitivity to (iHt, iFt) is

∂µ
(τ)
ℓCCTt

∂iHt

=
1

τ

[
AiHe(1− e−κiHτ ) + AiHF (τ)− AiHH(τ)

]
, (B.81)

∂µ
(τ)
ℓCCTt

∂iFt

=
1

τ

[
−AiFe(1− e−κiF τ ) + AiFF (τ)− AiFe(τ)

]
. (B.82)

When a > 0, and αe > 0 or αj(τ) > 0, AiHe < 1
κiH

and AiFe < 1
κiF

. Since, in addition,
A′

iHH(0) = A′
iFF (0) = 1 and A′

iHF (0) = A′
iFH(0) = 0, the derivative of (B.81) with

respect to τ at τ = 0 is negative, and the derivative of (B.82) with respect to τ at
τ = 0 is positive. Hence, there exists a threshold τ ∗ > 0 such that ∂µ

(τ)
ℓCCTt

∂iHt
< 0 and

∂µ
(τ)
ℓCCTt

∂iFt
> 0 for all τ ∈ (0, τ ∗). When countries are symmetric, we set κr ≡ κiH = κiF ,

σr ≡ σiH = σiF , Aie ≡ AiHe = AiFe, ∆A(τ) ≡ AiHH(τ)− AiHF (τ) = AiFF (τ)− AiFH(τ),
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∆λ̄ ≡ λ̄iHH − λ̄iHF = λ̄iFF − λ̄iFH < 0. Taking the difference between (B.38) and (B.39)
yields

∆A′(τ) + κr∆A(τ)− 1 = aσ2
r∆λ̄∆A(τ),

which integrates to

∆A(τ) = Aie

(
1− e−(κr−aσ2

r∆λ̄)τ
)

since ∆A(0) = 0 and ∆A(∞) = Aie. Substituting into (B.81) and (B.82), we find

∂µ
(τ)
ℓCCTt

∂iHt

= −∂µ
(τ)
ℓCCTt

∂iFt

=
1

τ
Aie(e

−(κr−aσ2
r∆λ̄)τ − e−κrτ ) < 0. (B.83)

Hence, τ ∗ = ∞.
The annualized expected return of the sequence of basic CCTs is

µ
(τ)
CCTt ≡

1

τ
Et

∫ t+τ

t

(λiHt′AiHe − λiF t′AiFe) dt
′.

Using (4.1) and (B.45), we find

∂µ
(τ)
CCTt

∂iHt

=
1− e−κiHτ

κiHτ

(
aσ2

iH λ̄iHHAiHe − aσ2
iF λ̄iFHAiFe

)
=

1− e−κiHτ

κiHτ
(κiHAiHe − 1), (B.84)

where the second step follows from (B.36). We likewise find

∂µ
(τ)
CCTt

∂iFt

= −1− e−κiF τ

κiF τ
(κiFAiFe − 1). (B.85)

Combining (B.81) and (B.84), we find

∂
(
µ
(τ)
ℓCCTt − µ

(τ)
CCTt

)
∂iHt

=
1

τ

[
1− e−κiHτ

κiH

+ AiHF (τ)− AiHH(τ)

]
> 0,

where the inequality sign follows from (B.65) by noting that the left-hand side of (B.65)
is negative. Combining (B.82) and (B.85), we likewise find

∂
(
µ
(τ)
ℓCCTt − µ

(τ)
CCTt

)
∂iFt

=
1

τ

[
−1− e−κiF τ

κiF

+ AiFF (τ)− AiFH(τ)

]
< 0.

Hence, the sensitivity of the long-horizon CCT’s expected return to (iHt, iFt) is smaller
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(less negative in the case of iHt and less positive in the case of iFt) than for the corre-
sponding sequence of basic CCTs. Since (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) go to finite
limits when τ goes to infinity, (B.80) implies that µ

(τ)
ℓCCTt goes to

lim
τ→∞

CF (τ)

τ
− lim

τ→∞

CH(τ)

τ
− (πF − πH)

= κiF iF (AiFF (∞)− AiFH(∞))− κiHiH (AiHH(∞)− AiHF (∞))

− 1

2
σ2
iF

[
AiFF (∞) (AiFF (∞)− 2AiFe)− AiFH(∞)2

]
+

1

2
σ2
iH

[
AiHH(∞)2 − AiHF (∞) (AiHF (∞) + 2AiHe)

]
+ aσ2

iF λ̄iFC (AiFF (∞)− AiFH(∞))− aσ2
iH λ̄iHC (AiHH(∞)− AiHF (∞))− (πF − πH)

= κiF iFAiFe − κiHiHAiHe +
1

2
σ2
iFA

2
iFe +

1

2
σ2
iHA

2
iHe

+ aσ2
iF λ̄iFCAiFe − aσ2

iH λ̄iHCAiHe − (πF − πH) = 0,

where the second step follows from (B.40) by noting limτ→∞
Cj(τ)

τ
= limτ→∞ C ′

j(τ), the
third step follows from (AiHH(∞)−AiHF (∞), AiFF (∞)−AiFH(∞)) = (AiHe, AiFe), and
the fourth step follows from (B.37). Since

lim
τ→∞

CF (τ)

τ
− lim

τ→∞

CH(τ)

τ
− (πF − πH) = y

(∞)
F − y

(∞)
H − (πF − πH),

the difference in real yields across countries becomes zero in the limit τ goes to infinity.

We next prove a lemma that we use in subsequent proofs.

Lemma B.7. When a > 0 and αe > 0, the functions
(

AiFH(τ)
AiHH(τ)

, AiHF (τ)
AiFF (τ)

)
are increasing.

Proof: The functions (AiHH(τ), AiFH(τ)) solve the system (B.51) of linear ODEs with
constant coefficients. The solution is an affine function of (e−ν1τ , e−ν2τ ), where (ν1, ν2)

are the eigenvalues of the matrix M . Because of the initial conditions AiHH(0) =

AiFH(0) = 0, we can write the solution as a linear function of
(

1−e−ν1τ

ν1
, 1−e−ν2τ

ν2

)
. Be-

cause (A′
iHH(0), A

′
iFH(0)) = (1, 0), the coefficients of the linear terms sum to one for

AiHH(τ) and to zero for AiFH(τ). Hence, we can write the solution as

AiHH(τ) =
1− e−ν1τ

ν1
+ ϕHH

(
1− e−ν2τ

ν2
− 1− e−ν1τ

ν1

)
, (B.86)

AiFH(τ) = ϕFH

(
1− e−ν2τ

ν2
− 1− e−ν1τ

ν1

)
, (B.87)

for scalars (ϕHH , ϕFH). The eigenvalues (ν1, ν2) are positive (Lemma B.1), and without
loss of generality we can set ν1 > ν2. Since AiFH(τ) is positive when a > 0 and αe > 0

A22



(Lemma B.3), ϕFH > 0. Since

AiHH(τ)

AiFH(τ)
=

1−e−ν1τ

ν1

ϕFH

(
1−e−ν2τ

ν2
− 1−e−ν1τ

ν1

) +
ϕHH

ϕFH

=
1

ϕHF

(
ν1
ν2

1−e−ν2τ

1−e−ν1τ
− 1
) +

ϕHH

ϕFH

,

and the function (ν1, ν2, τ) −→ 1−e−ν2τ

1−e−ν1τ
increases in τ because its derivative has the same

sign as eν1τ−1
ν1

− eν2τ−1
ν2

, the function AiHH(τ)
AFH(τ)

is decreasing. Hence, the inverse function
AiFH(τ)
AHH(τ)

is increasing. A similar argument using (B.52) establishes that AiHF (τ)
AFF (τ)

is increas-
ing.

Proof of Proposition 4.6: Consider a one-off increase in γt at time zero, and denote
by κγ the rate at which γt reverts to its mean of zero. Equation (B.45) is modified to

λijt = aσ2
ij

(
[ζe + θeγt − αe (AiHeiHt − AiFeiFt + Aγeγt + Ce)]Aije(−1)1{j=F}

+
∑

j′=H,F

∫ T

0

[ζj′(τ)− αj′(τ) (AiHj′(τ)iHt + AiF j′(τ)iFt + Aγj′(τ)γt + Cj′(τ))]Aijj′(τ)dτ

)
≡ aσ2

ij

(
λ̄ijjijt + λ̄ijj′ij′t + λ̄ijγγt + λ̄ijC

)
(B.88)

(B.12) is modified to (B.28), and (3.7) and (3.8) are modified to

µ
(τ)
jt ≡A′

iHj(τ)iHt + A′
iF j(τ)iFt + A′

γj(τ)γt + C ′
j(τ)

− AiHj(τ)κiH(iH − iHt)− AiF j(τ)κiF (iF − iFt) + Aγj(τ)κγγt

+
1

2
AiHj(τ)

(
AiHj(τ) + 2AiHe1{j=F}

)
σ2
iH +

1

2
AiF j(τ)

(
AiF j(τ)− 1{j=F}2AiFe

)
σ2
iF .

(B.89)

Substituting λt from (B.88) and µet from (B.28) into (3.10) (for the definitions of (Ae, λt)

in Section 4.2), we find an equation that is affine in (iHt, iFt, γt). Identifying the linear
terms in γt yields

κγAγe = aσ2
iH λ̄iHγAiHe − aσ2

iF λ̄iFγAiFe. (B.90)

Substituting λt from (B.88) and µ
(τ)
jt from (B.89) into (3.11) (for the definitions of (Aj(τ), λt)

in Section 4.2), we find an equation that is affine in (iHt, iFt, γt). Identifying the linear
terms in γt yields

A′
γj(τ) + κγAγj(τ) = aσ2

iH λ̄iHγAiHj(τ) + aσ2
iF λ̄iFγAiF j(τ). (B.91)
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Solving (B.91) with the initial condition Aγj(0) = 0, we find

Aγj(τ) = aσ2
iH λ̄iHγ

∫ τ

0

AiHj(τ
′)e−κγ(τ−τ ′)dτ ′+aσ2

iF λ̄iFγ

∫ τ

0

AiF j(τ
′)e−κγ(τ−τ ′)dτ ′, (B.92)

We next substitute Aγe from (B.90) and {Aγj(τ)}j=H,F from (B.92) into

λ̄ijγ ≡ (θe−αeAγe)Aije(−1)1{j=F}−
∫ T

0

αH(τ)AγH(τ)AijH(τ)dτ−
∫ T

0

αF (τ)AγF (τ)AijF (τ)dτ,

(B.93)

which follows from the definition of λ̄ijγ in (B.88). We find

(1 + aσ2
iHzγHH)λ̄iHγ + aσ2

iF zγFH λ̄iFγ = θeAiHe, (B.94)
aσ2

iHzγHF λ̄iHγ + (1 + aσ2
iF zγFF )λ̄iFγ = −θeAiFe, (B.95)

where

zγHH =
αe

κγ

A2
iHe +

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

AiHH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

AiHF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ,

zγFF =
αe

κγ

A2
iFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiFH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiFF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ,

zγHF = −αe

κγ

AiHeAiFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiHH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiHF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ,

zγFH = −αe

κγ

AiHeAiFe +

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

AiFH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

AiFF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ.

Equations (B.94) and (B.95) form a linear system of two equations in the two unknowns
(λ̄iHγ , λ̄iFγ). Its solution is

λ̄iHγ =
θe
∆zγ

[
(1 + aσ2

iF zγFF )AiHe + aσ2
iF zγFHAiFe

]
(B.96)

λ̄iFγ = − θe
∆zγ

[
(1 + aσ2

iHzγHH)AiFe + aσ2
iHzγHFAiHe

]
, (B.97)
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where

∆zγ ≡ (1 + aσ2
iHzγHH)(1 + aσ2

iF zγFF )− a2σ2
iHσ

2
iF zγHF zγFH .

To complete the proof, we proceed in three steps. In Step 1, we show that ∆zγ is
positive. In Step 2, we show that Aγe is positive. This proves the first statement in the
proposition. In Step 3, we show that AγH(τ) is positive and AγF (τ) is negative. This
proves the second and third statements in the proposition.

Step 1: ∆zγ is positive. Since (zγHH , zγFF ) are non-negative, ∆zγ > 0 under the
sufficient condition

zγHHzγFF ≥ zγHF zγFH . (B.98)

The function

F (µ) ≡ zγHH + µ(zγHF + zγFH) + µ2zγFF

=
αe

κγ

(AiHe − µAiFe)
2

+

∫ T

0

αH(τ) [AiHH(τ) + µAiFH(τ)]

[∫ T

0

[AiHH(τ) + µAiFH(τ)] e
−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ) [AiHF (τ) + µAiFF (τ)]

[∫ T

0

[AiHF (τ) + µAiFF (τ)] e
−κγ(τ−τ ′)dτ ′

]
dτ

is non-negative for all µ if

F0 ≡
∫ T

0

α(τ)A(τ)

[∫ τ

0

A(τ ′)e−κγ(τ−τ ′)dτ ′
]
dτ

is non-negative for a non-negative and non-increasing α(τ). Since

F0 =

∫ T

0

ϕ(τ)Φ(τ)

[∫ τ

0

Φ(τ ′)dτ ′
]
dτ,

where

ϕ(τ) ≡ α(τ)e−2κγτ ,

Φ(τ) ≡ A(τ)eκγτ ,

integration by parts implies

F0 =
1

2
ϕ(T )

[∫ T

0

Φ(τ)dτ

]2
− 1

2

∫ T

0

ϕ′(τ)

[∫ τ

0

Φ(τ ′)dτ ′
]2

dτ. (B.99)

The first term in the right-hand side of (B.99) is non-negative because α(τ) is non-negative,

A25



and the first term is non-positive because α(τ) is non-increasing. Therefore, F0 is non-
negative. Since F (µ) is quadratic in µ, its non-negativity for all µ implies

4zγHHzγFF ≥ (zγHF + zγFH)
2

⇒ zγHHzγFF ≥ 1

4
(zγHF + zγFH)

2 = zγHF zγFH +
1

4
(zγHF − zγFH)

2 ≥ zγHF zγFH .

Therefore, (B.98) holds.
Step 2: Aγe(τ) is positive. Substituting (λ̄iHγ , λ̄iFγ) from (B.96) and (B.97) into

(B.90), and using the definitions of (zγHH , zγFF , zγHF , zγFH) and that (θe,∆zγ) are posi-
tive, we find Aγe > 0 if

ZγHAiHe + ZγFAiFe > 0, (B.100)

where

ZγH ≡ σ2
iH(1 + aσ2

iF zγFF )AiHe + aσ2
iHσ

2
iF zγFHAiFe

= σ2
iHAiHe

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]

[∫ τ

0

AiFH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]

[∫ τ

0

AiFF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ,

ZγF ≡ σ2
iF (1 + aσ2

iHzγHH)AiFe + aσ2
iHσ

2
iF zγHFAiHe

= σ2
iFAiFe

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]

[∫ τ

0

AiHH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]

[∫ τ

0

AiHF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ.

Since (AiHe, AiFe, ZγH , ZγF ) are positive, (B.100) holds.
Step 3: AγH(τ) is positive and AγF (τ) is negative. We prove that AγH(τ) is

positive. The proof that AγF (τ) is negative is symmetric. Substituting (λ̄iHγ , λ̄iFγ) from
(B.96) and (B.97) into (B.92) for j = H, and using the definitions of (zγHH , zγFF , zγHF , zγFH)

and that (θe,∆zγ) are positive, we find AγH(τ) > 0 if

ZγH

∫ τ

0

AiHH(τ
′)e−κγ(τ−τ ′)dτ ′ − ZγF

∫ τ

0

AiFH(τ
′)e−κγ(τ−τ ′)dτ ′ > 0. (B.101)

Since (AiHH(τ), ZγH , ZγF ) are positive, AiFH(τ) is non-negative and AiFH(τ)
AiHH(τ)

is non-decreasing,
(B.101) holds under the sufficient condition

ZγHAiHH(∞)− ZγFAiFH(∞) > 0. (B.102)
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Using the definitions of (ZγH , ZγF ), we can write (B.102) as

σ2
iHAiHeAiHH(∞)− σ2

iFAiFeAiFH(∞)

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]

×
[∫ τ

0

[AiFH(τ
′)AiHH(∞)− AiHH(τ

′)AiFH(∞)] e−κγ(τ−τ ′)dτ ′
]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]

×
[∫ τ

0

[AiFF (τ
′)AiHH(∞)− AiHF (τ

′)AiFH(∞)] e−κγ(τ−τ ′)dτ ′
]
dτ > 0. (B.103)

Equation (B.39) for (j, j ′) = (H,F ) implies

AiFH(τ) =
aσ2

iH λ̄iHFAiHH(τ)

κiF − aσ2
iF λ̄iFF

− A′
iFH(τ)

κiF − aσ2
iF λ̄iFF

, (B.104)

which for τ = ∞ becomes

AiFH(∞) =
aσ2

iH λ̄iHFAiHH(∞)

κiF − aσ2
iF λ̄iFF

. (B.105)

Equation (B.38) for (j, j ′) = (F,H) implies

AiFF (τ) =
aσ2

iH λ̄iHFAiHF (τ)

κiF − aσ2
iF λ̄iFF

+
1− A′

iFF (τ)

κiF − aσ2
iF λ̄iFF

. (B.106)

Using (B.104)-(B.106) to simplify the terms in the first, second and fourth lines of (B.103),
and dividing throughout by aσ2

iHσ2
iFAiHH(∞)

κiF−aσ2
iF λ̄iFF

> 0, we find that (B.103) is equivalent to

(
κiF

aσ2
iF

− λ̄iFF

)
AiHe − λ̄iHFAiFe

−
∫ T

0

αH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]

[∫ τ

0

A′
iFH(τ

′)e−κγ(τ−τ ′)dτ ′
]
dτ

+

∫ T

0

αF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]

[∫ τ

0

(1− A′
iFF (τ

′))e−κγ(τ−τ ′)dτ ′
]
dτ > 0.

(B.107)

Equations (B.41) and (B.42) imply

− λ̄iFFAiHe − λ̄iHFAiFe

=

∫ T

0

αH(τ)AiFH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]dτ
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+

∫ T

0

αF (τ)AiFF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]dτ. (B.108)

We next substitute (B.108) into (B.107). Noting that 1 − A′
iFF (τ) > 0, which follows

from (B.38) for (j, j ′) = (F,H) and (B.74), and that (AiHH(τ), AiFF (τ), AiHe, AiFe) are
positive and (AiHF (τ), AiFH(τ)) are non-negative, we find that (B.107) holds under the
sufficient condition∫ T

0

αH(τ)[AiHeAiFH(τ)+AiFeAiHH(τ)]

[
AFH(τ)−

∫ τ

0

A′
iFH(τ

′)e−κγ(τ−τ ′)dτ ′
]
dτ ≥ 0,

which, in turn, holds because

AiFH(τ)−
∫ τ

0

A′
iFH(τ)e

−κγ(τ−τ ′)dτ ′ ≥ AiFH(τ)−
∫ τ

0

A′
iFH(τ

′)dτ ′ = AiFH(0) = 0.

Proof of Proposition 4.7: We prove the proposition in the case j = H. The proof for
the case j = F is symmetric. Consider a one-off increase in βHt at time zero, and denote
by κβH the rate at which βHt reverts to its mean of zero. The counterparts of (B.90) and
(B.92) are

κβHAβHe = aσ2
iH λ̄iHβAiHe − aσ2

iF λ̄iFβAiFe, (B.109)

AβHj(τ) = aσ2
iH λ̄iHβ

∫ τ

0

AiHj(τ
′)e−κβH(τ−τ ′)dτ ′ + aσ2

iF λ̄iFβ

∫ τ

0

AiF j(τ
′)e−κβH(τ−τ ′)dτ,

(B.110)

where

λ̄ijβ ≡ −αeAγeAije(−1)1{j=F}

+

∫ T

0

[θH(τ)− αH(τ)AβHH(τ)]AijH(τ)dτ −
∫ T

0

αF (τ)AβHF (τ)AijF (τ)dτ

(B.111)

is the counterpart of (B.93). The counterparts of (B.94) and (B.95) are

(1 + aσ2
iHzβHH)λ̄iHβ + aσ2

iF zβFH λ̄iFβ =

∫ T

0

θH(τ)AiHH(τ)dτ, (B.112)

aσ2
iHzβHF λ̄iHβ + (1 + aσ2

iF zβFF )λ̄iFβ =

∫ T

0

θH(τ)AiFH(τ)dτ, (B.113)
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respectively, where

zβHH =
αe

κβH

A2
iHe +

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

AiHH(τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

AiHF (τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ,

zβFF =
αe

κβH

A2
iFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiFH(τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiFF (τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ,

zβHF = − αe

κβH

AiHeAiFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiHH(τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiHF (τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ,

zβFH = − αe

κβH

AiHeAiFe +

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

AiFH(τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

AiFF (τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ.

The solution to the linear system of (B.94) and (B.95) is

λ̄iHβ =
1

∆zβ

[
(1 + aσ2

iF zβFF )

∫ T

0

θH(τ)AiHH(τ)dτ − aσ2
iF zβFH

∫ T

0

θH(τ)AiFH(τ)dτ

]
,

(B.114)

λ̄iFβ =
1

∆zβ

[
(1 + aσ2

iHzβHH)

∫ T

0

θH(τ)AiFH(τ)dτ − aσ2
iHzβHF

∫ T

0

θH(τ)AiHH(τ)dτ

]
,

(B.115)

where

∆zβ ≡ (1 + aσ2
iHzβHH)(1 + aσ2

iF zβFF )− a2σ2
iHσ

2
iF zβHF zβFH .

The same argument as in the proof of Proposition 4.6 implies ∆zβ > 0.
To complete the proof, we proceed in three steps. In Step 1, we show that (zβHF , zβFH)

are non-positive, and are zero when αe = 0. In Step 2, we show that AβHH(τ) is positive,
and that AβHF (τ) is positive when αe > 0 and zero when αe = 0. This proves the first
and second statements in the proposition. In Step 3, we show that AβHe is positive. This
proves the third statement in the proposition.

Step 1: (zβHF , zβFH) are non-positive, and are zero when αe = 0. Since Lemma
B.3 implies that AiFH(τ) is non-negative and AiFF (τ) is positive, and Lemma B.4 implies
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that AiHH(τ) is increasing and AiHF (τ) is non-decreasing,

zβHF ≤ − αe

κβH

AiHeAiFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiHH(τ)e
−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiHF (τ)e
−κβH(τ−τ ′)dτ ′

]
dτ

≤ − αe

κβH

AiHeAiFe +

∫ T

0

αH(τ)AiFH(τ)
AiHH(τ)

κβH

dτ +

∫ T

0

αF (τ)AiFF (τ)
AiHF (τ)

κβH

= − λ̄iHF

κβH

≤ 0,

where the second step follows because (AiHH(τ), AiFF (τ)) are positive and (AiHF (τ), AiFH(τ))

are non-negative, the third step follows from (B.42), and the fourth step follows from
Lemma B.2. The inequality zβFH ≤ 0 follows similarly.

When αe = 0, Lemma B.3 implies AiHF (τ) = AiFH(τ) = 0. Therefore, zβHF = zβFH =

0.
Step 2: AβHH(τ) is positive, and AβHF (τ) is positive when αe > 0 and zero

when αe = 0. Since (∆zβ, θH(τ), AiHH(τ)) are positive, (AiFH(τ), zβFF ) are non-negative,
and zβFH ≤ 0, (B.114) implies λ̄iHβ > 0. When αe > 0, AiFH(τ) > 0. Since, in
addition, zβHH ≥ 0 and zβFH ≤ 0, (B.115) implies λ̄iFβ > 0. When αe = 0, (B.115) and
AiFH(τ) = zβHF = 0 imply λ̄iFβ = 0.

Since (λ̄iHβ, AiHH(τ)) are positive and (λ̄iFβ, AiFH(τ)) are non-negative, (B.110) im-
plies AβHH(τ) > 0. When αe > 0, AiHF (τ) > 0. Since, in addition, (λ̄iHβ, λ̄iFβ, AiFF (τ))

are positive, (B.110) implies AβHF (τ) > 0. When αe = 0, (B.110) and AiHF (τ) = λ̄iFβ = 0

imply AβHF (τ) = 0.
Step 3: AβHe is positive. Substituting (λ̄βHH , λ̄βHF ) from (B.114) and (B.115) into

(B.109), and using the definitions of (zβHH , zβHF , zβFH , zβFF ), we find AβHe > 0 if

ZβH

∫ T

0

θH(τ)AiHH(τ)dτ − ZβF

∫ T

0

θH(τ)AiFH(τ)dτ > 0, (B.116)

where

ZβH ≡ σ2
iH(1 + aσ2

iF zβFF )AiHe + aσ2
iHσ

2
iF zβHFAiFe

= σ2
iHAiHe

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

[AiHeAiFF (τ
′) + AiFeAiHF (τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ,

ZβF ≡ σ2
iF (1 + aσ2

iHzHH)AiFe + aσ2
iHσ

2
iF zHFAiHe

= σ2
iFAiFe
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+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

[AiHeAiFF (τ
′) + AiFeAiHF (τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ.

Since (θH(τ), AiHH(τ)) are positive, AiFH(τ) is non-negative, and AiFH(τ)
AiHH(τ)

is non-decreasing
(increasing when a > 0 and αe > 0 from Lemma B.7, and zero when a = 0 or αe = 0),
the ratio

∫ T
0 θH(τ)AiFH(τ)dτ∫ T
0 θH(τ)AiHH(τ)dτ

is bounded above by AiFH(∞)
AiHH(∞)

. Since, in addition (ZβH , ZβF ) are
positive, (B.116) holds for all positive functions θH(τ) under the sufficient condition

ZβHAiHH(∞)− ZβFAiFH(∞) > 0. (B.117)

Using the definitions of (ZβH , ZβF ), we can write (B.117) as

σ2
iHAiHeAiHH(∞)− σ2

iFAiFeAiFH(∞)

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ) [AiFH(τ)AiHH(∞)− AiHH(τ)AiFH(∞)]

×
[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ) [AiFF (τ)AiHH(∞)− AiHF (τ)AiFH(∞)]

×
[∫ τ

0

[AiHeAiFF (τ
′) + AiFeAiHF (τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ > 0. (B.118)

Using (B.104)-(B.106) to simplify the terms in the first, second and fourth lines of (B.118),
and dividing throughout by aσ2

iHσ2
iFAiHH(∞)

κiF−aσ2
iF λ̄iFF

> 0, we find that (B.118) is equivalent to

(
κiF

aσ2
iF

− λ̄iFF

)
AiHe − λ̄iHFAiFe

−
∫ T

0

αH(τ)A
′
iFH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ

+

∫ T

0

αF (τ)(1− A′
iFF (τ))

[∫ τ

0

[AiHeAiFF (τ
′) + AiFeAiHF (τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ > 0.

(B.119)

We next substitute (B.108) into (B.119). Noting that 1−A′
iFF (τ) > 0 and that (AiHH(τ), AiFF (τ),

AiHe, AiFe) are positive and (AiHF (τ), AiFH(τ)) are non-negative, we find that (B.119)
holds under the sufficient condition∫ T

0

αH(τ)

{
AiFH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]dτ

−A′
iFH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]}

dτ ≥ 0,
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which, in turn, holds under the sufficient condition∫ T

0

αH(τ)

{
AiFH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]dτ

−A′
iFH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]dτ ′
]}

dτ ≥ 0. (B.120)

Equation (B.120) holds under the sufficient condition that the function

G(τ) ≡ AiFH(τ)∫ τ

0
[AiHeAiFH(τ ′) + AiFeAiHH(τ ′)]dτ ′

is non-increasing because the term in curly brackets in (B.120) is the negative of the
numerator of G′(τ). The function G′(τ) is non-increasing under the sufficient condition
that the function

G1(τ) ≡
A′

iFH(τ)

AiHeAiFH(τ) + AiFeAiHH(τ)

is non-increasing. Equation (B.39) for (j, j ′) = (H,F ) implies

G1(τ) =
aσ2

iH λ̄iHFAiHH(τ) + (aσ2
iF λ̄iFF − κiF )AiFH(τ)

AiHeAiFH(τ) + AiFeAiHH(τ)

=
aσ2

iH λ̄iHF + (aσ2
iF λ̄iFF − κiF )

AiFH(τ)
AiHH(τ)

AiHe
AiFH(τ)
AiHH(τ)

+ AiFe

.

Since λ̄iFH ≥ 0, λ̄iFF ≤ 0 and AiFH(τ)
AiHH(τ)

is non-decreasing, G1(τ) is non-increasing.

C Model Estimation

C.1 Numerical Solution Method

We derive a system of 25 nonlinear scalar equations in the elements of the 5×5 matrix M.
We adopt the exponential specification (5.6) and (5.7) for the functions {(αj(τ), θj(τ))}j=H,F ,
and set T = ∞. Using the exponential specification and T = ∞, we can compute the
integrals involving {Aj(τ)}j=H,F in the definition (B.5) of M by treating them as Laplace
transforms of {Aj(τ)}j=H,F . These Laplace transforms can be computed by solving sys-
tems of linear equations with coefficients that are linear in the elements of M . The
computation of the Laplace transforms does not require solving the ODE system (B.3)
for {Aj(τ)}j=H,F , which would entail computing eigenvalues and eigenvectors of M .
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We define the Laplace transform

Aj(s) ≡
∫ ∞

0

Aj(τ)e
−sτdτ

of Aj(τ), and

Xj(s) ≡
∫ ∞

0

Xj(τ)e
−sτdτ

of Xj(τ) ≡ Aj(τ)Aj(τ)
⊤. Multiplying (B.3) by e−sτ , taking integrals of both sides from

zero to infinity, and using the property that the Laplace transform of A′
j(τ) is s times

that of Aj(τ) (this property follows from integration by parts), we find

(sI +M)Aj(s) =
1

s
Eij → Aj(s) =

1

s
(sI +M)−1Eij, (C.1)

where I denotes the 5 × 5 identity matrix. Multiplying (B.3) from the right by Aj(τ)
⊤,

and adding to the resulting equation its transpose, we find

A′
j(τ)Aj(τ)

⊤+Aj(τ)A
′
j(τ)

⊤+MAj(τ)Aj(τ)
⊤+Aj(τ)Aj(τ)

⊤M⊤−EijAj(τ)
⊤−Aj(τ)E

⊤
j = 0.

(C.2)

Multiplying (C.2) by e−sτ , taking integrals of both sides from zero to infinity, and using
the definition of Xj(τ) and the property that the Laplace transform of X ′

j(τ) is s times
that of Xj(τ), we find(s

2
I +M

)
Xj(s) + Xj(s)

(s
2
I +M

)⊤
= EijAj(s)

⊤ +Aj(τ)E
⊤
ij. (C.3)

The solutions to (C.1) and (C.3) can be computed by solving systems of linear equa-
tions with coefficients that are linear in the elements of M . There are twenty-five scalar
equations in the system for (C.1). There are fifteen scalar equations in the system for
(C.3) because Xj(s) is a symmetric matrix. Equation (C.1) has a unique solution Aj(s)

if sI +M is invertible. Equation (C.3) is a Lyapunov equation and has a unique solution
Xj(s) under the sufficient condition that the eigenvalues of s

2
I + M have positive real

parts.
Using the Laplace transforms (Aj(s),Xj(s)) and the exponential specifications (5.6)

and (5.7), we can compute the integrals involving Aj(τ) in the definition of M as∫ ∞

0

θj(τ)EβjAj(τ)
⊤dτ = −θj0EβjA

′
j(θj1)

⊤, (C.4)∫ ∞

0

αj(τ)Aj(τ)Aj(τ)
⊤dτ = αj0Xj(αj1). (C.5)
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Deriving (C.4) requires using the property that the Laplace transform of τAj(τ) is minus
the derivative of the Laplace transform of Aj(τ). The derivative A′

j(s) can be computed
as function of Aj(s) by differentiating (C.1):

Aj(s) + (sI +M)A′
j(s) = − 1

s2
Eij ⇒ A′

j(s) = −(sI +M)−1

(
Aj(s) +

1

s2
Eij

)
. (C.6)

Using (C.4) and (C.5), together with

Ae = M−1 (EiH − EiF ) , (C.7)

which follows from (B.1), we can write (B.5) as

M ≡ Γ⊤ − a

[(
θeEγ − αeM

−1 (EiH − EiF )
)
(EiH − EiF )

⊤ (M−1
)⊤

−
∑

j=H,F

(
θj0EβjA

′
j(θj1)

⊤ + αj0Xj(αj1)
)]

ΣΣ⊤. (C.8)

The right-hand side of (C.8) is a function of M , derived from (C.1), (C.3) and (C.6).
Therefore, (C.8) forms a system of 25 nonlinear scalar equations in the 25 elements of
M . Given M , we derive Aj(τ) by solving the ODE system (B.3), and we obtain Ae from
(C.7). Given Aj(τ) and Ae, we solve for Cj(τ) and Ce from (B.2), (B.4) and (B.6).

We solve the system of 25 nonlinear scalar equations using a continuation algorithm.

• Step 0 of the algorithm solves the system for zero risk aversion a(0) = 0. The solution
is M = Γ⊤.

• Step i+ 1 of the algorithm solves the system for risk aversion a(i+1) = a(i) + s(i+1),
where a(i) is risk aversion for step i and s(i+1) is a small step size. The solution M (i)

in step i is used as initial condition for solving the system in step i+1. This ensures
that the solution in step i+1 is found quickly and is close to the solution in step i.

• The algorithm ends when a(i+1) = a.

If there are multiple solutions for M , the continuation algorithm picks the solution
that converges to the unique solution M = Γ⊤ when risk aversion goes to zero.

C.2 MLE for Alternative Parametrizations

Table C.1 reports parameter estimates and standard errors when innovations to the cur-
rency demand factor are allowed to correlate with innovations to the bond demand fac-
tors. The correlations are small (correlation σγ,βH√

σ2
γ,βH+σ2

γ,βF+σ2
γ

= −0.020 between innova-
tions to the currency demand factor and the home bond demand factor, and correlation

σγ,βF√
σ2
γ,βH+σ2

γ,βF+σ2
γ

= −0.185 between innovations to the currency demand factor and the
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foreign bond demand factor). The estimates for the remaining parameters are similar to
those in Table 1. The counterparts of the figures in Sections 5.3 and 5.4 (not reported
here) are similar as well.

Parameter Value Std. Err.
σiH 1.144 0.077
σiF 0.867 0.056
σiH,iF 0.309 0.075
κiH 0.102 0.061
κiF 0.127 0.049
κβ 0.059 0.058
κγ 0.041 0.116
aθeκγ,iH -142.1 109.5
aθeκγ,iF 148.1 116.7
aθ0σβ 887.9 173.6
aθeσγ 760.9 395.2
aα0 5.977 3.143
aαe 71.76 34.59
aθeσγ,βH -15.23 109.8
aθeσγ,βF -143.4 123.2

Table C.1: Estimated model parameters for correlated currency and bond demand

Table C.2 reports parameter estimates and standard errors for (α1, θ1) = (0.25, 0.5)

and Table C.3 does the same for (α1, θ1) = (0.3, 0.75). The estimates of all parameters
except for (aθ0σβ, aα0) are similar to those in Table 1. The estimates for (aθ0σβ, aα0) be-
come larger to compensate for the faster convergence of the functions {(αj(τ), θj(τ))}j=H,F

to zero. The counterparts of the figures in Sections 5.3 and 5.4 (not reported here) are
similar.

Parameter Value Std. Err.
σiH 1.163 0.076
σiF 0.882 0.058
σiH,iF 0.326 0.083
κiH 0.143 0.059
κiF 0.136 0.046
κβ 0.047 0.058
κγ 0.159 0.102
aθeκγ,iH -159.5 123.4
aθeκγ,iF 193.6 135.2
aθ0σβ 1079.0 222.3
aθeσγ 983.2 477.4
aα0 14.68 6.659
aαe 80.47 38.74

Table C.2: Estimated model parameters for (α1, θ1) = (0.25, 0.5)
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Parameter Value Std. Err.
σiH 1.165 0.076
σiF 0.888 0.058
σiH,iF 0.322 0.082
κiH 0.149 0.061
κiF 0.138 0.046
κβ 0.055 0.058
κγ 0.158 0.104
aθeκγ,iH -162.9 124.5
aθeκγ,iF 196.9 135.7
aθ0σβ 1472.0 307.7
aθeσγ 989.4 476.9
aα0 20.36 8.964
aαe 81.21 38.73

Table C.3: Estimated model parameters for (α1, θ1) = (0.3, 0.75)

Table C.4 reports parameter estimates and standard errors for the case where K = 21

and pt includes US and German yields with maturities from one to ten years and the
Dollar-Euro log exchange rate. The parameter estimates are similar to those in Table 1.
The counterparts of the figures in Sections 5.3 and 5.4 (not reported here) are similar as
well.

Parameter Value Std. Err.
σiH 1.180 0.075
σiF 0.940 0.065
σiH,iF 0.348 0.084
κiH 0.094 0.054
κiF 0.115 0.045
κβ 0.033 0.050
κγ 0.129 0.088
aθeκγ,iH -145.4 120.6
aθeκγ,iF 178.7 134.9
aθ0σβ 729.1 155.7
aθeσγ 946.4 472.2
aα0 4.569 2.737
aαe 80.12 39.55

Table C.4: Estimated model parameters using all yields from one to ten years

C.3 Sensitivity Analysis

Table C.5 shows the derivatives of the elements of the covariance matrix AΣ̂∆tA
⊤ of inno-

vations to the vector pt in the MLE estimation with respect to the thirteen model parame-
ters (σiH , σiF , σiH,iF , κiH , κiF , κβ, κγ, θeκγ,iH , θeκγ,iF , aθ0σβ, aθeσγ, aα0, aαe). The rows cor-
respond to matrix elements and the columns to model parameters. Since AΣ̂∆tA

⊤ is a
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5× 5 symmetric matrix, Table C.5 is 15× 13. We denote elements of AΣ̂∆tA
⊤ based on

the corresponding observables. Consider, for example, the element in the third row and
second column of AΣ̂∆tA

⊤ (which is the same as the element in the second row and third
column). That element is the covariance between innovations to the home ten-year yield
and the foreign one-year yield, and is denoted by y

(10)
H y

(1)
F . We express the derivatives as

elasticities by dividing by the matrix element and multiplying by the model parameter.
We highlight in red the elasticities that are within 80% of the maximum elasticity in
absolute value, and in yellow the elasticities that are within 50-80%. Table C.5 indicates
which elements of AΣ̂∆tA

⊤ are the main determinants of which parameters.

• The variance y
(1)
H y

(1)
H of innovations to the home one-year yield determines σiH be-

cause it is sensitive to only σiH . Indeed, in the row corresponding to y
(1)
H y

(1)
H , there

is a red in the column corresponding to σiH and no other reds or yellows.

• The variance y
(1)
F y

(1)
F of innovations to the foreign one-year yield determines σiF

because it is sensitive to only σiF . Indeed, in the row corresponding to y
(1)
F y

(1)
F ,

there is a yellow in the column corresponding to σiF and no other reds or yellows.

• The covariance y
(1)
H y

(1)
F between innovations to the home and the foreign one-year

yield determines σiH,iF because it is sensitive to only σiH,iF . Indeed, in the row
corresponding to y

(1)
H y

(1)
F , there is a red in the column corresponding to σiH,iF and

no other reds or yellows.

• The covariance y
(1)
H y

(10)
H between innovations to the home one- and ten-year yield

determines κiH . Indeed, in the row corresponding to y
(1)
H y

(10)
H , there is a yellow in

the column corresponding to κiH and no other reds or yellows, except for a yellow
in the column corresponding to σiH , which is determined above.

• The covariance y
(1)
F y

(10)
F between innovations to the foreign one- and ten-year yield

determines κiF . Indeed, in the row corresponding to y
(1)
F y

(10)
F , there is a yellow in

the column corresponding to κiH and no other reds or yellows, except for a yellow
in the column corresponding to σiF , which is determined above.

• The covariance y
(1)
H e between innovations to the home one-year yield and the ex-

change rate determines aθeκγ,iH . Indeed, in the row corresponding to y
(1)
H e, there is

a red in the column corresponding to aθeκγ,iH and no other reds or yellows except
in columns corresponding to parameters already determined and except for a yellow
in the column corresponding to aθeσγ.

• The covariance y
(1)
F e between innovations to the foreign one-year yield and the ex-

change rate determines aθeκγ,iF . Indeed, in the row corresponding to y
(1)
F e, there is

a red in the column corresponding to aθeκγ,iF and no other reds or yellows except
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in columns corresponding to parameters already determined and except for a yellow
in the column corresponding to aθeσγ.

• The covariance y
(10)
H e between innovations to the home ten-year yield and the ex-

change rate, and its foreign counterpart y
(10)
F e, determine κγ. Indeed, in the rows

corresponding to y
(10)
H e and y

(10)
F e, there is a red in the column corresponding to κγ

and no other reds or yellows except in columns corresponding to parameters already
determined and except for a yellow in the column corresponding to aθeσγ.

• The variances y(10)H y
(10)
H and y

(10)
F y

(10)
F of innovations to the home and foreign ten-year

yields, and the covariance y
(10)
H y

(10)
F of innovations between these yields, determine

κβ, aθ0σβ and aα0. Indeed, in the rows corresponding to y
(10)
H y

(10)
H , y

(10)
F y

(10)
F and

y
(10)
H y

(10)
F , there are reds or yellows in the columns corresponding to κβ, aθ0σβ and

aα0 and no other reds or yellows except in columns corresponding to parameters
already determined.

• The variance ee of innovations to the exchange rate, and the covariances between
innovations to yields and the exchange rate, determine aθeσγ and aαe. Indeed, in
the row corresponding to ee, there is a red in the columns corresponding to aθeσγ

and ee and no other reds or yellows except in columns corresponding to parameters
already determined. Moreover, in the column corresponding to aθeσγ there are
several other yellows, while in the column corresponding to αe there are no other
reds or yellows.

The intuition for the determination of aαe and aθeσγ is as follows. The effect of aαe

on the volatility of the exchange rate is particularly pronounced because higher demand
elasticity of currency traders causes both larger under-reaction of the exchange rate to
short rates and larger attenuation of currency demand shocks. Both effects lower the
volatility of the exchange rate. By contrast, the effect of aθeσγ on the volatility of the
exchange rate is less pronounced and more comparable to the effect on the covariance
between the exchange rate and bond yields. This is because higher volatility of currency
demand shocks causes larger under-reaction of the exchange rate to short rates, which
tempers the effect of the demand shocks’ higher volatility on the volatility of the exchange
rate.

C.4 GMM

We use four sets of moments for GMM. A first set of moments concern one-year yields.
They are the standard deviation of one-year yields y(1)jt and of their annual change ∆y

(1)
jt ≡

y
(1)
j,t+1−y

(1)
jt , and the standard deviation of the one-year yield differential y(1)Ht−y

(1)
Ft between

home and foreign.
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A second set of moments concern the exchange rate. They are the standard deviation of
the annual (log) exchange rate change ∆ log et ≡ log et+1 − log et; the correlation between
∆ log et and the one-year yield differential y

(1)
Ht − y

(1)
Ft ; the correlation between ∆ log et

and the annual change ∆y
(1)
jt in the home and foreign one-year yield; and the correlation

between the five-year change in the exchange rate ∆(5) log et ≡ log et+5 − log et and the
five-year yield differential y(5)Ht − y

(5)
Ft .

A third set of moments concern yields across all maturities up to twenty years. They
are the standard deviation of yields y

(τ)
jt and of their annual change ∆y

(τ)
jt ≡ y

(τ)
j,t+1 − y

(τ)
jt ;

the correlation between the annual changes ∆y
(1)
jt in one-year yields and ∆y

(τ)
jt in all other

yields; and the standard deviation of yield differentials y
(τ)
Ht − y

(τ)
Ft for all maturities.

A final set of moments concern trading volume. They are the trading volume of
US government bonds with maturities between zero and three years, and with maturities
between eleven and thirty years, as a fraction of total US government bond trading volume
(denoted by ṼH(0 ≤ τ ≤ 3) and ṼH(11 ≤ τ ≤ 30), respectively).

The total number of target moments is N = 12+ 7(NT − 1), where NT is the number
of bond maturities (we subtract one to not double-count the one-year maturity). With
maturities going from one to twenty years in annual increments, NT equals twenty and
the number of target moments is 145 (=12 + 7 × 19). We refer to the twelve moments
that do not depend on maturity as scalar.

We estimate the model by choosing the model parameters that minimize

L ≡
N∑

n=1

wn(m̂n −mn)
2, (C.9)

the weighted sum of squared differences between the empirical moments {m̂n}n=1,..,N and
their model-implied counterparts {mn}n=1,..,N . We set the weights wn to one for scalar
moments and to 1

NT
for moments that depend on maturity, so that each type of moment

receives the same weight (for moments corresponding to the one-year maturity, we use
1 + 1

NT
).

To compute the model-implied moments of exchange rates and bond yields, we first
compute the unconditional covariance and autocovariance of the state vector qt. Integrat-
ing the dynamics (2.7) of qt between −∞ and t, we find

qt − q̄ =

∫ t

−∞
e−Γ(t−s)ΣdBs. (C.10)

Equation (C.10) implies that the unconditional covariance matrix of qt is

Cov(qt, q⊤t ) =
∫ t

−∞
e−Γ(t−s)ΣΣ⊤e−Γ⊤(t−s)ds ≡ Σ̂. (C.11)
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Differentiating (C.11) with respect to t and noting that the derivative is zero, we find

ΓΣ̂ + Σ̂Γ⊤ = ΣΣ⊤, (C.12)

which is a Lyapunov equation and has a unique solution Σ̂ because the eigenvalues of Γ
have positive real parts. The unconditional autocovariance matrix of qt is

Cov(qt, q⊤t′ ) =
∫ t

−∞
e−Γ(t−s)ΣΣ⊤e−Γ⊤(t′−s)ds

=

[∫ t

−∞
e−Γ(t−s)ΣΣ⊤e−Γ⊤(t−s)ds

]
e−Γ⊤(t′−t)

= Σ̂e−Γ⊤(t′−t), (C.13)

for t′ > t, where the last step in (C.13) follows from (C.11).
Bond yields and log exchange rates in the model are affine functions of the state vector

qt. The covariance between two such affine functions Xqt + X0 and Y qt′ + Y0 for 1 × 5

constant vectors (X,Y ), scalars (X0, Y0), and t′ > t is

Cov(Xqt +X0, Y qt′ + Y0) = XCov(qt, q⊤t′ )Y ⊤. (C.14)

Table C.4 reports parameter estimates and standard errors for GMM. The GMM point
estimates are similar to the MLE ones in Table 1. GMM also delivers estimates for (a1, θ1),
which are similar to the values (0.15, 0.3) that we use in Section 5. The counterparts of the
figures in Sections 5.3 and 5.4 (not reported here) are similar except for the confidence
intervals for the UIP regressions and the exchange-rate responses to monetary policy.
These are significantly wider under GMM because of the higher standard errors of the
estimates for (θeκγ,iH , θeκγ,iF , aθeσγ, aαe).

C.5 Variance Decomposition

To compute the variance decomposition, we must account for the correlation between
the instantaneous innovations to the home short rate iHt and the foreign short rate iFt,
which arises because of the off-diagonal element σiH,iF of the diffusion matrix Σ. At-
tributing all the return variance that arises because of the Brownian motion BiHt to
iHt amounts to attributing to iHt all the variance that arises because of its correlated
part with iFt. To attribute the return variance due to the correlated part symmetri-
cally across iHt and iFt, we rotate the Brownian motions (BiHt, BiF t) to new versions
(BRiHt, BRiFt) that render the diffusion matrix symmetric. We then compute the frac-
tion of return variance that arises because of each Brownian motion in the rotated vector
BRt ≡ (BRiHt, BRiFt, Bγt, BβHt, BβFt)

⊤ and attribute it to the corresponding element of
qt ≡ (iHt, iFt, γt, βHt, βFt)

⊤.
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Parameter Value Std. Err.
σiH 1.429 0.148
σiF 0.751 0.140
σiH,iF 1.054 0.083
κiH 0.126 0.030
κiF 0.090 0.020
κβ 0.050 0.009
κγ 0.134 0.102
aθeκγ,iH -267.1 550.4
aθeκγ,iF 252.1 527.7
aθ0σβ 648.9 80.27
aθeσγ 762.7 1067.0
aα0 4.740 3.302
aαe 73.38 106.3
α1 0.144 0.031
θ1 0.374 0.014

Table C.6: Estimated Model Parameters using GMM

We denote the rotated diffusion matrix by ΣR. Since ΣR is symmetric and the product
of Σ times a rotation matrix R,

ΣRΣR = ΣRΣ
⊤
R = (ΣR)(ΣR)⊤ = ΣRR⊤Σ⊤ = ΣΣ⊤.

Therefore, ΣR = (ΣΣ⊤)
1
2 .

Since the log exchange rate and bond yields are affine in qt, the same calculation as in
(5.1) implies that the surprise component of a currency or bond log return over a horizon
∆t is Ar

∫ t+∆t

t
e−Γ(t+∆t−s)ΣRdBRs, where the 1× 5 vector Ar is endogenously determined

from the model parameters. The variance of the return is ArΣ̂∆tA
⊤
r , where

Σ̂∆t ≡
∫ t+∆t

t

e−Γ(t+∆t−s)ΣRΣ
⊤
Re

−Γ⊤(t+∆t−s)ds =

∫ t+∆t

t

e−Γ(t+∆t−s)ΣΣ⊤e−Γ⊤(t+∆t−s)ds

is the covariance matrix (computed in Section 5.1) of the innovations to qt over horizon
∆t. The return variance that arises because of the j’th element of the vector BRt is
ArΣ̂∆t,jA

⊤
r , where

Σ̂∆t,j ≡
∫ t+∆t

t

e−Γ(t+∆t−s)ΣRJjΣ
⊤
Re

−Γ⊤(t+∆t−s)ds

and Jj is a matrix whose terms are zero except for the term (j, j), which is one. The
matrix Σ̂∆t,j satisfies the Lyapunov equation

ΓΣ̂∆t,j + Σ̂∆t,jΓ
⊤ = ΣRJjΣ

⊤
R − e−Γ∆tΣRJjΣ

⊤
Re

−Γ⊤∆t.
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The fraction of return variance generated by the j’th element of the vector BRt is

ArΣ̂∆t,jA
⊤
r

ArΣ̂∆tA⊤
r

.

C.6 Correlations

The top left panel of Figure C.1 shows the correlation between changes to the one-year and
τ -year home bond yields as function of τ . The top right panel shows the same correlation
for foreign bond yields. The bottom left panel shows the correlation between changes
to the log exchange rate and the τ -year home and foreign bond yields as function of τ .
The bottom right panel shows the correlation between changes to the τ -year home and
foreign bond yields as function of τ . All changes are quarterly. The empirical correlations
are the red circles or brown diamonds. The model-implied correlations are the blue solid
or purple dashed lines. The black dashed or black dotted lines show the model-implied
correlations when arbitrageurs are risk-neutral. The model-implied correlations can be
computed as described in (C.14).

Figure C.1: Correlations between the exchange rate and bond yields

The empirical correlations are close to the model-implied ones. The correlations be-
tween long-maturity (10- to 20-year) home and foreign bond yields are around 70%. They
are higher than the correlations when arbitrageurs are risk-neutral, which are around 35%.
When arbitrageurs are risk-neutral, a country’s bond yields move only because of that
country’s short rate. Therefore, the correlation between bond yields across countries is
equal to that between short rates. When arbitrageurs are risk-averse, the correlation be-
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tween bond yields is influenced also by the bond demand factors, which generate positive
comovement for the reasons explained in Section 5.3.

The correlations between changes to the exchange rate and long-maturity (10- to 20-
year) bond yields are positive for foreign yields, negative for home yields, and smaller
than 20% in absolute value. They are significantly smaller in absolute value than the
correlations between home and foreign bond yields for the reasons explained in Section
5.3. They are smaller in absolute value than the correlations when arbitrageurs are risk-
neutral because the bond demand factors become a significant driver of long-maturity
bond yields but do not generate comovement between yields and the exchange rate.

The correlations between short- and long-maturity bond yields are equal to one when
arbitrageurs are risk-neutral because a country’s bond yields move only because of that
country’s short rate. When arbitrageurs are risk-averse, the correlations become signifi-
cantly smaller than one because the bond demand factors become a significant driver of
long-maturity bond yields while generating only small comovement between short- and
long-maturity yields.

C.7 Predictive Regressions

Bilson (1981) and Fama (1984) perform the regression

1

∆τ
log

(
et

et+∆τ

)
= aUIP + bUIP

(
y
(∆τ)
Ft − y

(∆τ)
Ht

)
+ et+∆τ .

The dependent variable is the rate of foreign currency depreciation over horizon ∆τ .
The independent variable is the foreign-minus-home ∆τ -year yield differential. Bilson
(1981) and Fama (1984) assume that the horizon ∆τ is short (monthly). Chinn and
Meredith (2004) perform the same regression for longer horizons. The coefficient bUIP of
this regression depends on second moments of bond yields and log exchange rates, and
can be computed as described in (C.14).

Lustig, Stathopoulos, and Verdelhan (2019) perform the regression

1

∆τ
log

(
P

(τ−∆τ)
F,t+∆τ et+∆τ

P
(τ)
Ft et

)
− 1

∆τ
log

(
P

(τ−∆τ)
H,t+∆τ

P
(τ)
Ht

)
= aLSV + bLSV

(
y
(∆τ)
Ft − y

(∆τ)
Ht

)
+ et+∆τ .

The dependent variable is the return over horizon ∆τ of the hybrid CCT constructed
using bonds with maturity τ . The independent variable is the foreign-minus-home ∆τ -
year yield differential. Since log bond prices are affine functions of the state vector qt, the
coefficient bLSV of this regression can be computed as described in (C.14).

Lloyd and Marin (2020) and Chernov and Creal (2021) perform the regression

1

∆τ
log

(
et

et+∆τ

)
= aUIPℓs+bUIPℓ

(
y
(∆τ)
Ft − y

(∆τ)
Ht

)
+bUIPs

[(
y
(τ2)
Ft − y

(τ1)
Ft

)
−
(
y
(τ2)
Ht − y

(τ1)
Ht

)]
+et+∆τ .
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The dependent variable is the rate of foreign currency depreciation over horizon ∆τ .
The independent variables are the foreign-minus-home ∆τ -year yield differential and the
foreign-minus-home slope differential between years τ1 and τ2. The coefficients bUIPs and
bUIPℓ of this regression can be computed as described in (C.14).

Fama and Bliss (1987) perform the regression

1

∆τ
log

(
P

(τ−∆τ)
j,t+∆τ

P
(τ)
jt

)
− y

(∆τ)
jt = aFB + bFB

(
f
(τ−∆τ,τ)
jt − y

(∆τ)
jt

)
+ et+∆τ .

The dependent variable is the log return over horizon ∆τ of the country-j bond with
maturity τ in excess of the ∆τ -year spot rate (yield). The independent variable is the
slope of the country-j term structure as measured by the difference between the forward
rate between maturities τ −∆τ and τ , and the ∆τ -year spot rate. Since log bond prices
are affine functions of the state vector qt, and the forward rate is

f
(τ−∆τ,τ)
jt = −

log

(
P

(τ)
jt

P
(τ−∆τ)
jt

)
∆τ

,

the coefficient bFB of this regression can be computed as described in (C.14).
Campbell and Shiller (1991) perform the regression

y
(τ−∆τ)
j,t+∆τ − y

(τ)
jt = aCS + bCS

∆τ

τ −∆τ

(
y
(τ)
jt − y

(∆τ)
jt

)
+ et+∆τ .

The dependent variable is the change over horizon ∆τ in the yield of a country-j bond
with initial maturity τ . The independent variable is the difference between the country-j
spot rates for maturities τ and ∆τ , normalized so that bCS is equal to one under the EH.
The coefficient bCS of this regression can be computed as described in (C.14).

C.8 Monetary Policy Transmission

The top left and top right panels of Figure C.2 show, respectively, how the cut to the
home short rate described in Section 5.4 affects arbitrageur bond holdings at time zero as
function of maturity, and how it affects their currency holdings over time. The bottom
left and right panels show the same for the cut to the foreign short rate. Holdings of home
bonds are shown in blue and of foreign bonds in red. Holdings are expressed as fraction
of US GDP.

Following the cut to the home short rate, aggregate holdings of home bonds by ar-
bitrageurs increase by 0.205% of GDP, as can be derived by integrating the blue line
over maturities. The sharpest increase occurs for maturities around three years. Arbi-
trageur holdings of foreign bonds remain essentially unchanged—they decrease by 0.001%
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Figure C.2: Conventional monetary policy and arbitrageur holdings –
Short rate cut

of GDP. Arbitrageur currency holdings increase by 0.751% of GDP following the cut, and
then decline gradually to their pre-cut value. The responses to the foreign short rate’s
cut have similar magnitudes (with currency holdings decreasing following the cut).

The top left and top right panels of Figure C.3 show, respectively, how the QE pur-
chases in the home country described in Section 5.4 affect arbitrageur bond holdings at
time zero as function of maturity, and how they affect their currency holdings over time.
The bottom left and right panels show the same for the QE purchases in the foreign
country. The coloring and units are as in Figure C.2.

Following the purchases of home bonds, aggregate holdings of home bonds by arbi-
trageurs decrease by 7.160% of GDP. Arbitrageurs thus sell to the central bank bonds
worth 71.6% (=7.16/10) of all the bonds that the central bank purchases (which are
assumed to be worth 10% of GDP). The maturities that arbitrageurs sell the most are
around five years. Arbitrageur holdings of foreign bonds increase by 1.105% of GDP, as
they seek to partly replace the home bonds that they sell to the central bank by foreign
bonds. Arbitrageur currency holdings increase by 0.844% of GDP following the cut, and
then decline gradually to their pre-cut value. The responses to the purchases of foreign
bonds have similar magnitudes (with currency holdings decreasing following the cut).

Figures C.4 and C.5 are the counterparts of Figures 4 and 5 for subsamples. For
each of Figures C.4 and C.5, the left two columns correspond to the subsample 06/1986-
12/2007 and the right two columns to the subsample 01/1999-04/2021. Our results are
reasonably stable when viewed in conjunction with the confidence intervals in Figures 4
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Figure C.3: Unconventional monetary policy and arbitrageur holdings –
Bond purchases

and 5.

Figure C.4: Conventional monetary policy – Subsamples

Figure C.5: Unconventional monetary policy – Subsamples

Figure C.6 shows additional comparative statics of the effects of QE. We vary the
slope parameter α0 of bond demand, the slope αe of currency demand, and the correlation
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parameter σiH,iF between the home and the foreign short rate. All parameters except for
the one that varies are set to their estimated values, except in the case of σiH,iF where we
also vary σiF to keep the standard deviation

√
σ2
iH,iF + σ2

iF of innovations to the foreign
short rate constant. The estimated value of the parameter that varies corresponds to
one in the x-axis by normalizing the units. The figure shows the ten-year yield and the
exchange rate. Results in the top row are for α0, in the middle row for αe, and in the
bottom row for σiH,iF .

Figure C.6: Additional comparative statics of effects of QE

When α0 increases, QE has weaker effects on domestic bond yields. This is because
bond investors require a smaller price increase to sell domestic bonds to the central bank.
As a result, arbitrageurs sell fewer domestic bonds to the central bank, and adjust less
their hedges in currency and foreign bonds. Because of the arbitrageurs’ reduced trading,
QE has weaker effects on the exchange rate and foreign bond yields.

When αe increases, QE has weaker effects on domestic bond yields. This is because
arbitrageurs can adjust their hedge in currency with smaller price impact, and thus become
more willing to sell domestic bonds to the central bank. Because arbitrageurs adjust more
their currency hedge, they also adjust more their foreign-bond hedge. As a result, QE
has stronger effects on foreign bond yields. The effects of QE on the exchange rate are
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non-monotone because on the one hand the adjustment to the currency hedge is larger
but on the other hand price impact in the currency market is smaller.

When σiH,iF increases, QE has stronger effects on domestic and foreign bond yields,
and weaker effects on the exchange rate. The intuition for foreign bond yields is that
arbitrageurs are better able to use foreign bonds to replace the domestic bonds that they
sell to the central bank, causing foreign bond yields to decrease by more. The intuition for
the exchange rate is that it becomes less responsive to short-rate shocks. (In the limit of
perfectly correlated short rates, the exchange rate is fixed.) Therefore, currency becomes
less valuable as a hedge, and the exchange rate responds less to QE. The intuition for
domestic yields is as follows. On the one hand, domestic yields should decrease by less
because arbitrageurs are better able to use foreign bonds to replace the domestic bonds
that they sell to the central bank. On the other hand, domestic yields should decrease by
more because currency becomes less valuable as a hedge. Either effect can dominate, and
the second one does under our estimated parameter values.
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