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Motivation

Bernanke: “QE works in practice but not in theory”

• By now the gap between practice and theory is small
• But what do we mean by QE works?

• Obvious: reduce long-term yields
• Less obvious: stimulate the economy
• Even less obvious: improve social welfare
• Reis: “QE’s original sin”

• Especially relevant today now that central banks are implementing QT while
increasing short rates

• Question: what is the optimal QE policy, and how does this interact with short rate
policy?
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Our Model

• This paper: develops a tractable general equilibrium model with market
segmentation, nominal frictions, and household heterogeneity

• Arbitrageurs must absorb supply and demand shocks in bond markets

• Clientele investors introduce a degree of market segmentation
• Bond markets populated by different investor clienteles (pension funds, mutual funds)
• Arbitrageurs (hedge funds, broker-dealers) partly overcome segmentation

• Households have differentiated access to bond markets
• Introduces imperfect risk-sharing and consumption dispersion across households

• Formally: embed a Vayanos-Vila model in a New Keynesian model, where households
are heterogeneous in their savings vehicles
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Findings: Policy Transmission

• Key mechanisms of conventional monetary policy:
• Policy rate changes are transmitted to households via segmented bond markets
• Interaction of arbitrageurs and investor clienteles implies portfolio rebalancing
• Hence, short rate changes lead to variation in risk premia

• Key mechanisms of balance sheet policy:
• Central bank asset purchases induce portfolio rebalancing and hence reduce risk premia
• Vice versa for central bank asset sales (QT)

• Thus, short rate and balance sheet policies are substitutes when targeting aggregate
borrowing rates

• A fall in aggregate borrowing rates is stimulative for the usual NK reasons

• However, both policies imply variation in risk premia
• Excess fluctuations in risk premia implies dispersion in borrowing rates and therefore
consumption across households
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Findings: Optimal Policy

• Hence, when policy is unconstrained we derive an optimal separation result:
• Conventional policy targets macroeconomic stability
• Unconventional policy targets financial stability

• However, when policy constraints bind, policy must balance trade-offs:
• Balance sheet constraints: short rate must be less reactive in order to minimize financial
disruptions (at the cost of macroeconomic stability)

• Short rate constraints: QE must be used to offset macroeconomic shocks (at the cost of
financial stability)

• General message: implementation matters for welfare
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Model Set-Up

• Continuous time New Keynesian model with embedded Vayanos-Vila bond markets
• Agents:

• Firms: monopolistic competitors produce using labor, face nominal pricing frictions
• Households: supply labor, consume, save via differentiated habitat bond funds
• Habitat funds: buys and sell bonds of a specific maturity
• Arbitrageurs: imperfect risk-bearing capacity, conduct bond carry trades

• Policymakers:
• Central bank: conducts short rate and balance sheet (QE) policy
• Government: optimal production subsidy, otherwise passive

• Bond markets:
• Continuum of zero coupon bonds with maturity 0 ≤ τ ≤ T ≤ ∞
• Bond price P(τ)t with yield to maturity y(τ)t = − log P(τ)t /τ

• Nominal short rate: in equilibrium, it = limτ→0 y(τ)t
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Arbitrageurs

• Mean-variance optimization

maxEt dWt −
γ

2 Vart dWt

s.t. dWt = Wtit dt+
∫ T

0
X(τ)t

(
dP(τ)t

P(τ)t
− it dt

)
dτ

• Arbitrageurs invest X(τ)t in bond carry trade of maturity τ
• Remainder of wealth Wt invested at the short rate
• Risk-return tradeoff governed by γ

Key takeaway: risk averse arbitrageurs’ holdings increase with expected return
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Preferred Habitat Funds

• Habitat bond demand for maturity τ :

Z(τ)t = −α(τ) log P(τ)t − θ(τ)βt

• α(τ): demand elasticity for τ fund
• βt: additional time-varying (“noise”) demand factor

dβt = −κβ
(
βt − β̄

)
dt+ σβ dBβ,t

• θ(τ): mapping from demand factor to τ-habitat demand

Key takeaway: price movements require portfolio rebalancing
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Households

• Continuum of HHs, differentiated by access to bond markets τ
• There is a mass η(τ) of each τ HH where

∫ T
0 η(τ) dτ = 1 (but otherwise identical)

• A τ-HH chooses consumption and labor C(τ)t ,N(τ)
t in order to solve

V(τ)0 ≡ maxE0

∫ ∞

0
e−ρt


[
C(τ)t

]1−ς

1− ς
−

[
N(τ)
t

]1+ϕ

1+ ϕ

dt

s.t. dA(τ)t =
[
WtN(τ)

t − PtC(τ)t

]
dt+ A(τ)t

dP(τ)t

P(τ)t
+ dF(τ)t

• A(τ) is nominal wealth earning dP(τ)
t

P(τ)
t

and dF(τ)t are (flow) nominal transfers
• Wt is the nominal wage and Pt is the price index (same for all HHs)

Key takeaway: differentiated consumption and labor choices when bond returns not
equalized
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Firms

• Continuum of intermediate goods j ∈ [0, 1] (and CES final good)
• Linear production in labor Yt,j = ZtNt,j where Zt = Z̄ezt is aggregate technology:

dzt = −κzzt dt+ σz dBt,z

• Face Rotemberg costs Θ(πt,j) =
θ
2π

2
t,jPtYt when setting prices

dPt,j
Pt,j = πt,j dt

• Nominal profits are given by

Ft(Pt,j, Yt,j, πt,j) = (1+ τ∗)Pt,jYt,j −WtNt,j −Θ(πt,j)− Tt

• τ∗ is the (optimal) production subsidy funded by lump-sum taxes Tt
• Firms choose πt,j in order to solve

U0 ≡ maxE0

∫ ∞

0
e−ρtQt

Ft
Pt

dt

• Since HHs own firms, profits are discounted by weighted real SDF Qt ≡
∫ T
0 η(τ)Q(τ)

t dτ

Key takeaway: pricing frictions create deadweight loss
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Government

• Central bank chooses the policy rate it
• Balance sheet policies: bond holdings S(τ)t , potentially subject to costs:

1
2PtYt

∫ T

0
ψ(τ)

(
S(τ)t

)2
dτ

• Optimal policy: maximize social welfare

maxE0

∫ ∞

0
e−ρt

(∫ T

0
η(τ)u

(
C(τ)t ,N(τ)

t

)
dτ
)

dt

• In the background: fiscal authority chooses production subsidy τ∗

Key takeaway: policy attempts to undo frictions:

1. Monopolistic competition =⇒ inefficient production
2. Nominal pricing frictions =⇒ deadweight loss
3. Market segmentation =⇒ consumption dispersion
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Simplifying Assumptions

• Tractability assumption: a “head of HH” sets transfers such that in equilibrium,
wealth is equalized: across τ HH groups, A(τ)t ≡ At

• Pros: clear focus on the role market segmentation plays on consumption dispersion
• Cons: ignores the impact of market segmentation on wealth inequality

• Approximation: around a limiting case: risk σz, σβ → 0 but arbitrageur risk aversion
γ → ∞

• Pros: clear focus on the idea of “imperfect arbitrage”
• Cons: quantitatively less realistic risk premia

• Allows us to derive simple first-order approximations of dynamics and second-order
approximations for welfare and focus on analytical results
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Bond Market Equilibrium

• Bond price dynamics:

dP(τ)t

P(τ)t
≡ µ

(τ)
t dt+ σ

(τ)
t dBt

• Bt collects innovations to risk factors (technology, noise demand, ...)
• Arbitrageur optimality conditions:

µ
(τ)
t − it = σ

(τ)
t Λt

Λt = γ

∫ T

0
X(τ)t

[
σ

(τ)
t

]⊤
dτ

• Term premia depend on risk aversion γ and equilibrium holdings X(τ)t
• In our limiting case, σ(τ)

t Λt ̸= 0
• Equilibrium: fixed point problem(s)

• Market clearing: Z(τ)t demand depends on log P(τ)t
• Central bank policy reacts to consumption and inflation, which depends on µ

(τ)
t
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Aggregation

• Symmetric equilibrium: Yt,j = Yt,Pt,j = Pt, πt,j = πt,
dPt
Pt = πt dt and we have

Yt = ZtNt ≡ Zt
∫ T

0
η(τ)N(τ)

t dτ

Ct ≡
∫ T

0
η(τ)C(τ)t dτ = Yt

(
1− θ

2π
2
t −

1
2

∫ T

0
ψ(τ)

(
S(τ)t

)2
dτ
)

• Firms, arbitrageurs, and funds transfer profits to HHs. Bond market clearing implies

X(τ)t + Z(τ)t + S(τ)t = 0

• Natural benchmark: θ → 0 and γ → 0 along with optimal τ∗ implies first-best

Ynt = Cnt = Z
1+ϕ
ς+ϕ

t , Nnt = Z
1−ς
ς+ϕ

t ,
Wn

t
Pnt

= Zt

• Output gap Xt ≡ Yt
Ynt

details
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Household and Firm Optimality Conditions

• Bond price dynamics and household (log-linearized) optimality conditions give:

dc(τ)t = ς−1
(
µ
(τ)
t − πt − ρ

)
dt

• Also gives us a modified dynamic IS curve:

dxt = ς−1 (µ̃t − πt − r∗t ) dt

• r∗t ≡ −κzzt is the usual natural rate and µ̃t is the effective borrowing rate:

µ̃t =

∫ T

0
η(τ)µ

(τ)
t dτ

• Firm (log-linearized) optimality conditions give a standard NKPC:

dπt = (ρπt − δxt) dt

• =⇒ to a first-order, our model is essentially the same as Ray, Droste, &
Gorodnichenko (2023)
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Social Welfare

• A second-order expansion of social welfare relative to the first best gives social loss

L0 ≡ − 12 E0
∫ ∞

0
e−ρt

(
(ς + ϕ)x2t + θπ2t +

ς

ϕ
(ς + ϕ) Varτ c(τ)t +Ψt

)
dt

• Compared to a standard RANK model, there is the addition of the term Varτ c(τ)t

Varτ c(τ)t ≡
∫
η(τ)

(
c(τ)t

)2
dτ −

[∫
η(τ)c(τ)t dτ

]2
• Also losses from central bank balance sheet policies when costs ψ(τ) > 0

Ψt ≡
∫ T

0
ψ(τ)

(
S(τ)t

)2
dτ

• Increased consumption dispersion across HHs implies welfare losses
details
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Equilibrium and Welfare Illustration: Standard Model

Agg. Dynamics
xt, πt

Central Bank
it

Households
dct ,nt

Firms
yj,t, πj,t

↓ agg. shock

↓ πt

↓ it =⇒ ↓ rt

↓ dct ↑ yj,t

↑ xt, πt

Var xt > 0,Var πt > 0 =⇒
↓ welfare
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Equilibrium and Welfare Illustration: Imperfect Arbitrage

Agg. Dynamics
xt, πt

Central Bank
it, S(τ)t

Households
dc(τ)t ,n(τ)t

Firms
yj,t, πj,t

Arbitrageurs
X(τ)t

Habitat Funds
Z(τ)t

↓ agg. shock

↓ πt

↓ it or ↑ S(τ)t

rebalancing

↓ µ̃t − πt, µ
(τ)
t ̸= it

↓ dc(τ)t ↑ yj,t

↑ xt, πt

Var xt > 0,Var πt > 0 =⇒
↓ welfare

Varτ c(τ)t > 0 =⇒
↓ welfare
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Ad-hoc Policy Rule

• In order to better understand the model, simplify to a version of the model which
only includes natural rate shocks r∗t

• Consider a policy rule which implements

it = r∗t

• Also consider an ad-hoc QE shock:

S(τ)t ≡ ζ(τ)β
(QE)
t

dβ(QE)
t = −κQEβ(QE)

t dt

• We will examine the outcome of these policies in different versions of the model

20



Risk Neutral Arbitrageur



Benchmark: Risk Neutral Arbitrageur (“Standard Model”)

• Consider the benchmark case of a risk neutral arbitrageur: γ = 0
• The expectations hypothesis holds:

µ
(τ)
t = it = r∗t

• =⇒ model collapses to a standard RANK model and so

Varτ c(τ)t = 0

• Recover the standard QE neutrality result: balance sheet policies do not affect bond
prices (and therefore have no aggregate effects)

• Divine coincidence holds: conventional policy can achieve first-best xt = πt = 0
• With the addition of cost-push shocks, instead face an output-inflation trade-off

• ‘Woodford-ian’ equivalence: the role of policy on aggregate dynamics and welfare is
fully summarized by policy rate it
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Imperfect Arbitrage

• Now assume γ > 0 and the central bank continues to implement it = r∗t
Proposition (Imperfect Arbitrage and Ad-hoc Policy)
Assume risk aversion γ > 0 and price elasticities α(τ) > 0

Bond markets: bond carry trade return µ(τ)
t − it

• Decreases with the short rate it
• Decreases with QE shocks β(QE)

t

Aggregate dynamics: output gaps xt and inflation πt

• Not identically zero: Var xt ̸= 0 and inflation Var πt ̸= 0;
• QE increases the output gap and inflation

Dispersion: consumption dispersion Varτ c(τ)t ̸= 0
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Imperfect Arbitrage Intuition: Policy Pass-Through

• Consider a fall in the natural rate inducing a cut in the policy rate:
• When ↓ it, bond arbitrageurs want to invest more in the BCT
• =⇒ bond prices increase ↑ P(τ)t
• As ↑ P(τ)t , price-elastic habitat bond investors (α(τ) > 0) reduce their holdings: ↓ Z(τ)t
• Bond arbitrageurs increase their holdings ↑ X(τ)t , which requires a larger BCT return

• Now consider a QE shock
• QE purchases: ↑ S(τ)t
• Bond arbitrageurs reduce holdings ↓ X(τ)t , reducing risk exposure and pushing down yields
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Imperfect Arbitrage Intuition: Aggregate Effects

• Therefore, a shock to the natural rate does not fully pass through to the effective
borrowing rate µ̃t ̸= it

• Thus aggregate borrowing demand changes, and hence xt ̸= 0
• Through the NKPC, πt ̸= 0

• On the other hand, a QE shock stimulates the economy
• QE reduces borrowing rates ↓ µ̃t and therefore stimulates aggregate consumption ↑ xt
• Through the NKPC, inflation ↑ πt

• Additionally, in general µ(τ)
t ̸= µ

(τ ′)
t

• Hence individual Euler equations differ
• =⇒ c(τ)t ̸= c(τ

′)
t and therefore Varτ c(τ)t ̸= 0
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Imperfect Arbitrage and Macroeconomic Stabilization

• Can conventional policy alone close the output gap?
• Yes but the short rate must react more than one-for-one with the natural rate:

it = χ̂ir∗t , χ̂i > 1

• The parameter χ̂i is chosen so that

µ̃t = r∗t

• However, this does not achieve first-best since Varτ c(τ)t ̸= 0
• In fact, relative to the policy it = r∗t , in general we have ↑ Varτ c(τ)t

• Short rate is more volatile, hence ↑ term premia volatility
• This implies higher dispersion across borrowing rates µ(τ)

t and therefore an increase in
consumption dispersion

• Optimal short rate policy: if ψ(τ) → ∞, then optimal policy implements

it = χ∗
i r∗t , χ∗

i < χ̂i =⇒ ∂µ̃t
∂r∗t

< 1
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Imperfect Arbitrage and Macro-Financial Stabilization

• With access to frictionless balance sheet policies, we obtain the following

Proposition (Optimal Policy Separation Principle)
Assume risk aversion γ > 0 and price elasticities α(τ) > 0, and holding costs ψ(τ) = 0.
Suppose the central bank implements short rate and balance sheet policy according to

it = r∗t
S(τ)t = α(τ) log P(τ)t + θ(τ)β̄

Then first-best is achieved:

• Macroeconomic stabilization: xt = πt = 0 ∀t
• Financial stabilization: µ(τ)

t = µ̃t ∀τ
• Consumption equalization: c(τ)t = c(τ

′)
t ∀τ, τ ′ and hence Varτ c(τ)t = 0 ∀t
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Optimal Policy Separation Principle: Intuition

• The results follow naturally from our findings regarding ad-hoc policy
• QE policy stabilizes shocks to bond markets by offsetting all habitat portfolio
rebalancing shocks:

S(τ)t = −Z(τ)t =⇒ σ
(τ)
t Λt = 0

• This equalizes borrowing rates across HHs: µ(τ)
t = µ̃t

• Hence the model collapses to a standard RANK model, in which case divine
coincidence implies it = r∗t is optimal

Separation principle for optimal policy:

• Optimal balance sheet policy stabilizes financial markets
• Optimal short rate policy stabilizes macroeconomic aggregates
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Financial Stabilization Policy with Short Rate Constraints

• Suppose that short rate policy is constrained and so cannot implement the policy
derived above

• Note: we do not model an explicit ZLB as the non-linearities make solving for equilibrium
in bond markets much more difficult

• Instead, assume that the short rate in equilibrium evolves according to

it = χir∗t , 0 < χi < 1

• If the central bank continues to implement the balance sheet policy derived above,
then borrowing rates are still equalized µ(τ)

t = µ̃t

• However, µ̃t ̸= r∗t and hence this policy does not achieve macroeconomic stabilization

xt ̸= 0, πt ̸= 0
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Macroeconomic Stabilization with Short Rate Constraints

• Can balance sheet policy alone close the output gap?
• Yes but must sacrifice equalizing borrowing rates:

µ
(τ)
t = it + σ

(τ)
t λt

λt ≡ γ

∫ T

0

[
α(τ) log P(τ)t + θ(τ)β̄ − S(τ)t

]
σ
(τ)
t dτ

• Hence, can always choose
{
S(τ)t

}
such that

λ∗t =
r∗t − it∫ T

0 η(τ)σ
(τ)
t dτ

=⇒ µ̃t = r∗t

• However, because σ
(τ)
t

σ
(τ′)
t

̸= 1 this necessitates

µ
(τ)
t = it + σ

(τ)
t

(
r∗t − it∫ T

0 η(τ
′)σ

(τ ′)
t dτ ′

)
≠ r∗t (unless it = r∗t )
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Stabilization with Short Rate Constraints: Intuition

• Balance sheet policy works by affecting term premia through changes in the market
price of risk

• Although arbitrage is imperfect in this model, arbitrageurs still enforce tight
restrictions between between market price of risk and term premia across maturities

• Hence, while in principle the central bank has a continuum of policy tools
{
S(τ)t

}
, in

practice it can only manipulate λt
• Related to localization results in Vayanos & Vila (2021) and Ray, Droste, &
Gorodnichenko (2023)

• In the one-factor model considered here, the effects of QE are fully global
• Even with more complicated risk structure, localization is not strong enough to allow
balance sheet policy alone to achieve first-best
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Imperfect Balance Sheet Policies

• When facing balance sheet costs 0 < ψ(τ) <∞, optimal policy is a mix of the
examples described above

• In this case, optimal policy implies

∂µ̃t
∂r∗t

< 1, ∂µ
(τ)
t − it
∂it

< 0

• Hence, first-best is not achieved: xt ̸= 0, πt ̸= 0 and Varτ c(τ)t ̸= 0

• Counter-intuitive result: suppose ∃τ ′ such that 0 < ψ(τ ′) < ψ(τ), α(τ ′) > α(τ)

• Optimal policy may still imply central bank takes largest positions in τ∗ ̸= τ ′ bonds
• Intuition: other bonds may be more effective at repricing market risk (also related to
localization results from previous example)
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Extensions



Extensions: “Noise” Demand Shocks

• We obtain identical results when allowing for shocks to habitat demand β(τ)
t

• Optimal separation principle still holds with ψ(τ) = 0, but QE must be more reactive:

S(τ)t = α(τ) log P(τ)t + β
(τ)
t

• Optimal short rate policy still implements it = r∗t

• Additional result: if noise demand dynamics are such that ↑↑ β(τ)
t in response to ↑ r∗t ,

then it is optimal to expand the balance sheet ↑ S(τ)t while hiking rates ↑ it
• Intuition:

• Suppose during a hiking cycle and in the absence of QE we have an increase in term
premia

• Then the optimal balance sheet policy is to conduct additional QE purchases in order to
offset spike in term premia

• =⇒ conventional and unconventional policy seem to be at odds with one another
• Otherwise, short rate policy and balance sheet policy tend to be reinforcing
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Extensions: Cost-Push Shocks

• What if divine coincidence does not hold? Cost-push shocks:

dπt = (ρπt − δxt − ut) dt

• Unfortunately, our separation principle still holds:
• Optimal QE stabilizes term premia
• Short rate policy must contend with the output gap/inflation trade-offs

• Intuition: despite multiple policy instruments, (un)conventional policy only affects
aggregate outcomes through changes in effective borrowing rate µ̃t

• Take any feasible path {xt, πt, µ̃t}t from an implementation implying policies
{̃
it, S̃(τ)t

}
t

• Can also be achieved with it = µ̃t, S(τ)t = α(τ) log P(τ)t + β
(τ)
t

• This guarantees Varτ c(τ)t = 0 and hence strictly dominates
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Extensions: Non-Zero First-Best Carry Trade Returns

• Our approximation approach implies that in the first-best, expected carry trade
returns are zero

• This simplifies our analytical results but of course is an extreme assumption
• Suppose instead that first-best BCT returns are ν(τ) ̸= 0
• Our separation principle still holds when ν(τ) is achievable but optimal short rate
policy is a function of ν(τ)

• Intuition: combination of previous results
• Aggregate outcomes through changes in effective borrowing rate µ̃t (as before)
• Optimal QE policy guarantees µ(τ)

t − it ≡ ν(τ) and hence µ̃t = it +
∫ T
0 η(τ)ν(τ) dτ ≡ it + ν̃

• Thus, optimal short rate policy implements it = r∗t − ν̃

• Note: if first-best BCT returns are not achievable, optimal policy is more complicated
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Measuring Balance Sheet Objectives: Return Predictability

• Fama-Bliss regression:

1
∆τ

log

(
P(τ−∆τ)
t+∆τ

P(τ)t

)
− y(∆τ)

t = a(τ)FB + b(τ)FB

(
f(τ−∆τ,τ)
t − y(∆τ)

t

)
+ εt+∆τ

• Measures how the slope of the term structure predicts excess returns
• In our model, when the central bank does not use balance sheet policies:

b̄(τ)FB > 0

• If balance sheet policy is pursuing financial stabilization:

b̄(τ)FB > b(τ)FB → 0

• Instead, if balance sheet policy is pursuing macroeconomic stabilization:

b(τ)FB > b̄(τ)FB
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Fama-Bliss Coefficients: Treasuries, Full Sample
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FB coefficients are non-zero (and increasing across maturities)
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Fama-Bliss Coefficients: 10-year Treasuries, Rolling Sample
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FB coefficients increase during initial QE regime, but have fallen and even become
negative in recent years
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Concluding Remarks

• This paper develops a tractable general equilibrium model with market
segmentation, nominal frictions, and household heterogeneity

• We find that optimal short rate and balance sheet policy is characterized by a sharp
optimal separation result:

• Conventional policy targets macroeconomic stability
• Unconventional policy targets financial stability

• Optimal policy removes excess volatility of risk premia and hence improves
risk-sharing across households, while reducing excess macroeconomic volatility

• Policy constraints on either the short rate or balance sheets imply trade-offs between
these two policy objectives

• When considering social welfare, cannot abstract from the policy tools used to
conduct monetary policy
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Aggregation Details I

• Aggregating across HH members:

C =

∫
η(τ)C(τ) dτ , N =

∫
η(τ)N(τ) dτ , A =

∫
η(τ)A(τ) dτ , a =

∫
η(τ)a(τ) dτ

• Hence, aggregate HH real wealth evolves:

da = [wN− C] dt+ a
(∫

η(τ)
dP(τ)

P(τ)
dτ − π dt

)
+
1
P dF

• Formally, τ HHs borrow through the relevent τ-habitat fund =⇒ budget constraint

dW(τ) = Z(τ) dP(τ)

P(τ)
+
[
W(τ) − Z(τ) + η(τ)A(τ)

]
idt− η(τ)A(τ) dP(τ)

P(τ)
• Flow budget constraint for the central bank:

dW(CB) = WCBidt+
∫
S(τ)

(
dP(τ)
P(τ)

− idt
)

dτ
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Aggregation Details II

• Total transfers from arbitrageurs, central bank, and habitat funds to HHs:

dW+

∫
dW(τ) dτ + dW(CB) =

[
W+W(CB) +

∫
W(τ) dτ + A

]
idt−

∫
η(τ)A(τ) dP(τ)

P(τ)
dτ

• Follows from market clearing
∫
X(τ) + Z(τ) + S(τ) dτ = 0

• Term in brackets is aggregate demand for short-term bonds (reserves): B = 0 in
equilibrium

• Output and goods market clearing gives nominal firm profits transferred to HHs:∫ 1

0
Fj dj = PY

(
1− w

Z − θ

2π
2
)

= PC−W Y
Z = PC−WN

• Hence, aggregate nominal transfers to the HH sector are given by

dF = [PC−WN] dt− A
∫
η(τ)

dP(τ)
P(τ)

dτ

=⇒ dA = 0, da = −aπ dt = 0 (if A = 0)
back



Aggregation Details III

• Finally, the “head of HH” ensures that each member has identical wealth A(τ) ≡ A
• With A(τ) = A = 0, we have that aggregate HH transfers are given by

dF = [PC−WN] dt

• Wealth of a τ member in equilibrium is given by

dA(τ) =
[
WN(τ) − PC(τ)

]
+ dF(τ)

• Hence, the head of HH redistributes wealth according to

dF(τ) =
[
PC(τ) −WN(τ)

]
dt

=⇒ dF =
∫
η(τ) dF(τ) dτ

• Note: recall that there is a mass η(τ) of each τ-HH type; while transfers depend on τ ,
each τ member takes these as given
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Equilibrium General Characterization I

• Collect all state variables yt and jump variables xt into a vector Yt
• Assume the central bank implements policy which in equilibrium satisfies

it = χ⊤
i yt

S(τ)t = ζ(τ)⊤yt

• Then (assuming determinacy conditions hold), the first-order approximation
described above implies the unique REE

dYt = −Υ
(
Yt − Ȳ

)
dt+ SdBt

=⇒ dyt = −Γ (yt − ȳ) dt+ σ dBt
xt − x̄ = Ω (yt − ȳ)

• Γ,Ω are functions of the eigen-decomposition of Υ, which depends endogenously
on sensitivity of bond prices to state
back



Equilibrium General Characterization II

• Bond prices are (log) affine functions of the state

− log P(τ)t = A(τ)⊤ (yt − ȳ) + C(τ)

• Affine coefficients solve the following fixed point

A(τ) =
∫ τ

0
e−Ms dsχi

M = Γ⊤ −
∫ T

0
[−α(τ)A(τ) +Θ(τ)− ζ(τ)]A(τ)⊤ dτ γΣ

• Note: γΣ ̸= 0 in the limiting case described above
• Bond returns are given by

µ
(τ)
t = Â(τ)⊤ (yt − ȳ) + C′(τ)

Â(τ) = A′(τ) + Γ⊤A(τ)
= χi + (Γ⊤ −M)A(τ)

back



Equilibrium General Characterization III

• In general, welfare loss can be written

L0 ≡ − 12 E0
∫ T

0
η(τ)B(τ)⊤

[∫ ∞

0
e−ρt (yt − ȳ) (yt − ȳ)⊤ dt

]
B(τ) dτ

= − 12

∫ T

0
η(τ)B(τ)⊤Σ̃∞B(τ) dτ

• Both the vector functions B(τ) and the long-run discounted variance Σ̃
∞ terms may

depend on policy choices
back
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