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1 Introduction

Central banks responded aggressively to worsening financial conditions and growing reces-
sionary pressure during the global financial crisis of 2007-8. After steep cuts in policy rates,
central banks found themselves constrained by the zero lower bound, and the crisis was fol-
lowed by a deep recession. Not content to sit on their hands, policymakers undertook vari-
ous unconventional policy actions such as forward guidance and large scale asset purchases,
the most salient of which was the quantitative easing programs carried out by the Federal
Reserve.

What was the purpose of these unconventional policies? With policy rates constrained,
the immediate goal was to push down long-term interest rates. But more fundamentally,
policymakers believed these actions would stimulate the economy by boosting output and
stabilizing inflation. As economic conditions have returned to normal, pivotal questions for
macroeconomics remain. The emerging view (though not quite a consensus) in the empirical
literature surrounding unconventional monetary policies is that large scale asset purchases
(LSAPs) were effective at reducing long-term rates. On the other hand, the economy was
not as sensitive to forward guidance as implied by some workhorse models. Why was this?
And what were the feedback mechanisms of unconventional policy actions to the broader
economy?

The purpose of this paper is to study these monetary tools within a tractable, unified
framework. To this end, this paper embeds a model of the term structure featuring market
segmentation and limits to arbitrage within a New Keynesian framework. There are two
key departures from a benchmark model. First, borrowing depends not only on the policy
rate but also on the entire term structure of interest rates. Second, the term structure
is determined in financial markets whose participants face limited risk-bearing capacity
and are susceptible to demand shocks, as in Vayanos and Vila (2009). I use this model
as a laboratory to study conventional and unconventional monetary policy. Crucially, the
analysis considers policy both during normal times and over increasing degrees of financial
crisis, and studies how policy actions interact with disruptions in financial markets.

The empirical literature has highlighted the importance of financial frictions, and in
particular market segmentation, for understanding unconventional policy (for example,
D’Amico and King (2013), Hamilton and Wu (2012), Gorodnichenko and Ray (2017)). As-
suming that all borrowing takes place frictionlessly at the short (policy) rate is a useful
simplification in many settings, but is too strong of an assumption for the purposes of this
paper. Adding segmented bond markets to a macroeconomic model allows for more realis-
tic and complicated dynamics in the determination of the term structure of interest rates.
This enables the model to accomplish two goals: first, to match the relevant empirical find-
ings regarding the term structure’s response to demand shifts; and second, to study how
these term structure changes interact with aggregate outcomes in general equilibrium.

The implications of the model are important for understanding the efficacy of monetary
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policy. When financial markets are healthy, so that marginal investors in financial markets
have high risk-bearing capacity, the “expectation hypothesis” holds. That is, long-term rates
are (roughly) the average of expected short rates. As a result, both conventional monetary
policy and forward guidance are effective at stabilizing the economy. In this situation,
household borrowing responds strongly to shifts in the path of the policy rate, leading to
movements in output and inflation.

However, the link between expected short rates and the term structure is weakened
when financial distress is high. As a result, long-term rates under-react to changes in the
policy rate. Therefore, the model predicts that during a financial crisis output and inflation
are less responsive to monetary shocks than usual.

Similar logic applies to LSAPs, but the implications are precisely the opposite. Pur-
chases of long-term bonds, as in the various rounds of quantitative easing (QE), will have
little to no effect on long-term rates when financial markets are healthy. When the central
bank purchases a large amount of debt securities on the secondary market, the purchases
change the portfolio allocation of the marginal investors in the debt market. Effectively,
QE purchases allow financial investors to offload a source of risk from their portfolios. If fi-
nancial markets are healthy, these investors are not very concerned with this source of risk
to begin with, and so they do not require much excess returns to hold these securities. In
this case, policies like QE will have little effect. But as financial markets become unable
to bear risk, these purchases may matter a great deal. The shifts in the bond holdings al-
ter the overall riskiness of these portfolios. By changing the riskiness of marginal investors’
portfolio allocations, QE leads to changes in equilibrium prices of bonds, which in turn
feed back into the household borrowing decision. This general equilibrium channel is akin
to the familiar household Euler equation; under the right conditions, QE can boost output
and stabilize the economy.

Benchmark models are not amenable to studying unconventional policies. Because of
the extreme forward-looking behavior of agents and the lack of any financial frictions in
such models, forward guidance policies are highly effective to the point of implausibility.
Conversely, LSAP policies are completely ineffective in conventional models. The presence
of limited arbitrage in my framework breaks this tight link. But it will still be the case that
the term structure is rendered arbitrage-free, so that there are no riskless trades left on
the table. Any deviations from the expectations hypothesis are due to the risky portfolio
allocations chosen by financial market arbitrageurs (the marginal investors in the model).
Hence, the channel through which unconventional policies like QE can have aggregate effects
is by changing the market prices of risk.

As always, one fundamental source of risk is the movement in the short (policy) rate
that is set by the central bank. All bonds are exposed to this risk, so as long as arbitrageurs
are not perfectly risk-neutral there will be deviations from the expectations hypothesis.
All else equal, arbitrageurs will require excess expected returns in order to take non-zero

2



positions in long-term debt. This effect weakens the strength of forward guidance, but
opens the door for LSAPs. The central bank is able to change the portfolio allocations of
arbitrageurs, which through changes in the price of risk lead to changes in interest rates.

The exact impact of LSAP programs depends on how the purchases are structured.
The amounts to be purchased, which maturities are targeted, and the duration of the
program all affect the interaction with the sources of risk in the economy and the broader
feedback mechanisms in the macroeconomy. The model delivers interesting and important
interactions in general equilibrium. Because the policy rate responds to shifts in output
and inflation, the expected path of short rates is a function of future expected output and
inflation. When financial markets exhibit imperfect risk-bearing capacity, there is not a
perfect link between longer-term rates and the expected path of short rates. Since these
long-term rates affect household borrowing and hence influence output and inflation, the
model exhibits rich feedback mechanisms; moreover, the dynamics of the model depend
crucially on the health of financial markets. On the other hand, conditional on the term
structure dynamics, the aggregate dynamics of the model stay close to benchmark models.
The model adds only a handful of additional endogenous parameters which differentiate
it from more familiar “three-equation” New Keynesian models. Therefore, the model is
amenable to closed-form analysis.

I lay out the main building blocks of my “New Keynesian preferred habitat” framework in
Section 2. Section 3 considers the case where prices are fully rigid. This is of course extreme
and rules out important dynamics. However, many of the results can still be obtained and
this simplifying assumption allows for a clearer focus on the intuition for the results. The
main benefit is that this simplification rules out interesting but tricky determinacy issues
(to which I return to later). In the most basic setup, the central bank sets the policy rate
according to a Taylor-type rule subject to shocks. This is the only source of uncertainty.
I then consider two extensions: first, I study forward guidance by assuming the central
bank announces a path of policy rates; second, I study QE by allowing the central bank
to directly purchase long-term bonds in the secondary market. The analysis confirms the
intuition described above: conventional monetary policy and forward guidance become less
effective as financial markets become disrupted (in the sense of both moving long-term rates
and of impacting output); while at the same time, LSAP policies become more effective.

Next, Section 4 allows for prices to be sticky but not fully fixed. The main results go
through here, but only if a determinacy condition is met. This condition is similar to the
standard Taylor principle in textbook models, but with a key difference: the determinacy
condition depends on the health of financial markets. A novel implication is that as financial
markets become more disrupted, the model moves toward the region of indeterminacy. To
the extent that model indeterminacy is either a proxy or a cause of excess volatility, this
result shows how a purely financial crisis can lead to macroeconomy instability.

The focus of Sections 3 and 4 is delivering analytical results, but this comes at a cost
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of empirical realism. Section 5 extends the model to allow for many sources of aggregate
and financial shocks in order to better match the data. In this section I develop the
tools to solve the model numerically and estimate the model using U.S. data from before
and during the recent financial crisis. The results confirm the qualitative findings of the
more parsimonious models: monetary policy becomes less effective during financial crises;
QE becomes more effective. Quantitatively, the model predicts that the aggregate output
effects of a policy like the first round of QE were roughly 40% larger than a 50 basis point
expansionary monetary shock during a period of relative financial calm. Further, had the
zero lower bound not been binding during the financial crisis, additional rounds of rate cuts
would have been 20% less effective than rate cuts during normal times.

Section 5 also studies more complicated LSAP programs like Operation Twist (where
the Federal Reserve bought long-term debt and sold short-term debt). The model predicts
these policies may be effective, depending on which maturities are targeted for purchase and
the overall structure of risk in financial markets. In particular, when financial markets are
relatively healthy, Operation Twist will have the net effect of pushing down interest rates
across the entire term structure. However, the estimated model shows that when financial
frictions are very high, Operation Twist-style policies will push down long-term rates but
push up short-term rates. To the extent output is most sensitive to intermediate yields,
this can have the net effect of raising effective borrowing rates of households, leading to
contractionary outcomes.

I also show how determinacy can be restored if the central bank follows an endogenous
rule for QE purchases. The main result is that, as financial frictions increase, the standard
Taylor rule is less effective at stabilizing the economy. Formally, a Taylor rule eventually
becomes unable to guarantee determinacy (for any parameterization). But the same forces
that make standard policy ineffective also make a QE rule more effective, hence this carries
some of the weight of the determinacy issues and restores stability. Finally, Section 5
also conducts optimal policy experiments and finds that the endogenous policy response to
inflation should become more aggressive in financial crises. Section 6 discusses additional
extensions of the model and concludes.

This paper makes a number of contributions to the literature. One theoretical contri-
bution is to extend the logic of Vayanos and Vila (2009) to a general equilibrium macroe-
conomic setting. This setup is amenable to analyzing state-dependent responses to policy
changes while maintaining a relatively tractable framework. The paper adds to the large
literature exploring the importance of macroeconomic factors in explaining the term struc-
ture, such as Ang and Piazzesi (2003). Other papers that tie reduced-form term structure
modeling to New Keynesian macroeconomic dynamics include Hördahl et al. (2006) and
Rudebusch and Wu (2008). My model contributes to this literature and can be viewed as
a microfoundation for an affine term structure in macroeconomic factors.

From a partial equilibrium perspective, preferred habitat models can rationalize the
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interest rate response of QE but are silent on the aggregate effects of QE on inflation and
output. Moreover and crucially, even the term structure response is conditional on the path
of the short rate and independent of all other possible macroeconomic determinants of the
term structure. My model is able to study both the direct and indirect effects of QE on the
term structure and the transmission channels to the aggregate economy. Beyond that, the
model makes additional important predictions: the frictions that imply QE is effective also
imply that monetary policy conducted through changes in the short rate is less effective,
and leads to increased aggregate instability. The model also highlights the centrality of
these financial frictions as opposed to the zero lower bound constraint on conventional
policy. The zero lower bound is neither necessary nor sufficient: QE is effective even away
from the ZLB, but only when financial markets are imperfect; conversely, even at the ZLB,
if financial markets are healthy then QE will have no effect.

From a theoretical perspective, this paper also introduces a relatively tractable model
in which aggregate demand explicitly depends on long-term rates, and demonstrates how to
solve the model with or without the expectations hypothesis. The model is also one in which
aggregate dynamics are approximated linearly while still demonstrating sensitivity to risk.

I focus on limits to arbitrage and preferred habitat as important mechanisms for un-
derstanding conventional and unconventional monetary policy, based not only on empirical
work looking at QE, but also studies of the determinants of the yield curve more generally
(e.g. D’Amico and King (2013), Hamilton and Wu (2012), Gorodnichenko and Ray (2017),
Greenwood and Vayanos (2014), Beraja et al. (2015)). In this way, my paper adds to the lit-
erature studying how market segmentation interacts with unconventional monetary policy
(e.g. Alvarez et al. (2002), Gertler and Karadi (2013), Chen et al. (2012), Carlstrom et al.
(2017)). This overcomes the irrelevance results derived in Wallace (1981) and contrasts
with an alternative view that treats QE as a signalling tool of the central bank (e.g. Chris-
tensen and Rudebusch (2012), Bauer and Rudebusch (2014), or Bhattarai et al. (2015)).

In addition, I move beyond studying QE and explore the implications of bond market
frictions for monetary policy more broadly defined. Hence, the paper also falls into a broad
class of macroeconomic models focusing on financial frictions (for a recent paper see Adrian
and Duarte (2018); see Brunnermeier et al. (2012) for a survey). The approach in this paper
differs from recent work focusing on borrowing constraints on the part of households (e.g.
Kaplan et al. (2018)). The model also has a similar flavor as recent work which focuses on
breaking the tight link between the path of future expected policy and current economic
responses (e.g. McKay et al. (2016), Farhi and Werning (2017), Gabaix (2016), Angeletos
and Lian (2018)). These papers make agents less responsive to expected future shocks.
My approach has similar implications, but the degree of under-reaction is governed by the
risk-bearing capacity of financial markets. In other words, the key frictions I focus on are
those which mitigate the transmission of monetary policy through financial markets to the
broader macroeconomy.
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2 A New Keynesian Preferred Habitat Framework

I work with continuous time New Keynesian models that are largely characterized by a
Phillips curve (relating current inflation πt to current and future output gaps xt), an IS
curve (relating output growth to the real borrowing rate), and a monetary policy rule that
governs how the nominal policy rate rt reacts to macroeconomic variables. The setup is
similar to Werning (2011).

The key difference between my model and a textbook New Keynesian model is that
output depends on some “effective” nominal borrowing rate that depends not only on short
rates, but also on longer rates. Assume that there is a continuum of zero-coupon nominal
bonds with maturities τ ∈ (0, T ], with time t price Pt,τ and yield given by

Rt,τ = − logPt,τ
τ

.

I assume that the effective nominal rate is

r̃t ≡
∫ T

0
η(τ)Rt,τ dτ (1)

where η(τ) is a positive but otherwise arbitrary weighting function. This is a flexible way
to allow for borrowing to depend explicitly on long-term interest rates. Assuming that
all borrowing takes place at the short rate is a useful simplification but is too strong an
assumption for the purposes of studying unconventional policies like forward guidance and
QE. My specification aims to capture aspects of investment and savings decisions that are
typically abstracted away in simple models. Although I do not explicitly model durable
consumption or housing, in reality these are drivers of household borrowing that depend a
great deal on long-term interest rates. Capital investment is also outside the model, but
firm investment is similarly sensitive to long-term interest rates.1

Formally, these weights may arise for lifecycle borrowing reasons, or due to household’s
limited access to debt markets. Appendix C presents microfoundations based on the latter
setup. I relegate the derivations to the appendix due to the similarity with the derivation
of a benchmark New Keynesian model and start the exposition with the familiar linearized
aggregate equations governing the dynamics of the macroeconomy. The IS curve is modified
such that the output gap evolves according to

dxt = ς−1 (r̃t − πt − r̄) dt (2)

where ς−1 is the intertemporal elasticity of substitution and r̄ is the “natural” real borrowing
rate (assumed constant in this model). As in a benchmark model, changes in the output gap

1See Kaplan and Violante (2014) for a discussion of household portfolio allocations across short- and
long-term securities in the United States. Note that I focus purely on maturity, rather than differences
between liquid and illiquid savings vehicles.
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are increasing in the nominal borrowing rate and decreasing in inflation. The only difference
is that now the growth rate of output depends explicitly on the entire term structure of
interest rates.

The Phillips curve, relating current inflation to current and future output, is unchanged
relative to a standard New Keynesian model. The dynamics of inflation are governed by

dπt = (ρπt − δxt) dt (3)

where ρ is the discount rate and δ governs the degree of price stickiness. δ → ∞ implies
fully flexible prices, while δ → 0 implies fully rigid prices.

Finally, the central bank controls the instantaneous short rate rt (the policy rate). At
first, I will assume that this takes the form of a Taylor-type rule where the policy rate reacts
to current levels of output and inflation subject to shocks. When studying forward guidance,
I will also consider models in which the central bank announces a path of the policy rate.

For modeling the macroeconomic data generating process, I attempt to stay as close
as possible to a benchmark “three equation” New Keynesian model for two reasons. First,
even in partial equilibrium solving the term structure model becomes quite complicated.
Embedding this setup in a dynamic general equilibrium model adds to the complexity.
Keeping the model tractable and deriving analytical results is only possible if the underlying
dynamics of the macroeconomy are kept simple. Second, because the mechanisms of simple
New Keynesian models are still present in more sophisticated models, it’s reasonable to
expect that the findings of my model will hold in more detailed extensions.

Before diving into the details, some intuitive results are immediate. The central bank
sets only the short rate, while the rest of the term structure of interest rates is an equilibrium
object. Since the effective borrowing rate depends on the entire yield curve, specifying only
a rule for the policy rate does not necessarily close the model. However, if the expectations
hypothesis holds, then long-term yields are fully determined by the expected path of short
rates. In this case, without fully solving the model it’s possible to see how unconventional
policies will work. Forward guidance is powerful: by announcing a path of short rates,
long-term rates will react immediately, and therefore the effective borrowing rate will also
move sharply. This implies that consumption (and output) will also respond sharply. On
the other hand, QE is ineffective: purchases of long-term bonds have no effect on the path
of short rates, and hence do not change long-term yields.

But if the expectations hypothesis does not hold, a monetary policy rule no longer
closes the model and it becomes necessary to specify how the entire term structure of
interest rates are determined. For this purpose, I embed a “preferred habitat” model of
the term structure, as in Vayanos and Vila (2009). Interest rates are determined by the
interaction of two types of investors: clientele investors, who have idiosyncratic demand
for bonds of specific maturities, and arbitrageurs with limited risk-bearing capacity, who
integrate bond markets. The preferred habitat view of the term structure has long been
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of relevance to practitioners, but less so in academic models. Partly this is due to the fact
that naïve forms of preferred habitat models conflict with no-arbitrage conditions: if the
term structure were determined only by clientele investors with extreme preferences for
bonds of specific maturities, bonds that are close to one another in maturity space could
have large price differences. By allowing for arbitrageurs to integrate bonds of different
maturities, the model avoids the unrealistic outcome of extreme segmentation and ensures
that no-arbitrage conditions are satisfied. However, when arbitrageurs do not have perfect
risk-bearing capacity, deviations from the expectations hypothesis arise.

I follow Vayanos and Vila (2009) in setting up the preferences for arbitrageurs and
idiosyncratic preferred habitat investors. Arbitrageurs choose how much of each bond to
hold (denoted by bt,τ ) in order to maximize an instantaneous mean-variance trade-off of
the change in wealth, subject to their budget constraint:

max
bt,τ

Et dWt −
a

2
Vart dWt

s.t. dWt =

(
Wt −

∫ T

0
bt,τ dτ

)
rt dt+

∫ T

0
bt,τ

dPt,τ
Pt,τ

dτ .

By holding bt,τ of a τ bond, arbitrageurs receives the instantaneous return dPt,τ
Pt,τ

. The
remainder of their wealth not invested in long-term bonds is held at the risk-free rate rt
(the short rate). The risk-aversion parameter a ≥ 0 is fixed, but should be thought of as a
proxy for limited risk-bearing capacity of financial markets.

The other side of the bond market is the demand from idiosyncratic clientele preferred
habitat investors, which is given by

b̃t,τ = α(τ)τ(Rt,τ − βt,τ ). (4)

The function α(τ) > 0 is the semi-elasticity of preferred habitat demand (note τRt,τ =

− logPt,τ ), and hence governs how sensitive these investors are to returns for τ bonds.
This function is otherwise unrestricted; but the sign restriction implies that demand from
preferred habitat investors is downward-sloping (increasing in yields). βt,τ is a demand
shifter, and can be thought of as a target yield. When rates are above the target, a τ
investor increases their demand for τ bonds; and vice versa for when rates fall below the
target. Note that, holding Rt,τ fixed, an increase in βt,τ implies that τ investors reduce their
holdings of τ bonds. I will consider different forms of this shifter (both deterministic and
stochastic) in later sections. In equilibrium, bond prices must adjust so that arbitrageurs
absorb the demand from preferred habitat investors (bt,τ = −b̃t,τ ) while satisfying their
mean-variance portfolio allocation problem.

This bond market setup is stylized: arbitrageurs are infinitesimally lived, and a τ -bond
preferred habitat investor cares only about a specific slice of maturity space. Neverthe-
less, the model captures important facets of segmented markets, and how limited arbitrage
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smooths out idiosyncratic demand shocks. The preferred habitat setup is a natural way
to study the affects of LSAP programs. Moreover, private investors such as pension funds
and insurance companies often have demand for long-term bonds that arise from the need
to match their long-term liabilities; these important sources of demand are not captured
by intertemporal consumption substitution decisions that drive the term structure in more
standard models. But these investors are not the only participants; otherwise debt markets
would exhibit extreme segmentation. Arbitrageurs integrate debt markets and eliminate
risk-free arbitrage opportunities, but are risk-averse and face limits to their trading activi-
ties. How conventional and unconventional policy affects the entire term structure will de-
pend heavily on the limits to arbitrageurs’ risk-bearing capacity.

In general, the term structure will be determined by complicated interactions between
these two classes of investors and the general equilibrium dynamics of the macroeconomy.
However, two limiting cases can be analyzed immediately. First, if arbitrageurs are risk-
neutral (a = 0, so they only care about expected returns), then equilibrium can only be
achieved if Et

[
dPt,τ
Pt,τ

]
= rt. And if expected instantaneous returns of all bonds are equalized

at the short rate, then risk-neutral arbitrageurs are indifferent between any bond allocation.
In this case, they will absorb any demand shifts from preferred habitat investors without
any equilibrium price changes. In other words, idiosyncratic demand shifts will not affect
the term structure of interest rates.

In the other extreme, if arbitrageurs abandon the bond market (allocating the entirety of
their wealth to the risk-free short rate), then equilibrium is only satisfied (0 = bt,τ = −b̃t,τ )
if yields satisfy Rt,τ = βt,τ . This would imply that bonds of very close maturity could have
very different yields (and would potentially evolve unrelated to the short rate). Again, note
that in this extreme case an increase in the demand shifter βt,τ would push up the τ -bond
yield. But this extreme segmentation does not occur in equilibrium because arbitrageurs
do take non-zero positions in long-term bonds. The impact of changes in preferred habitat
demand (if any) will depend on how arbitrageurs adjust their portfolio allocations. In turn,
this will depend on the equilibrium dynamics of the short rate and other macroeconomics
variables.

Intuitively, what does general equilibrium look like in this model? From the perspective
of households, the key factor is how sensitive their effective borrowing rate is to the short
rate. The model reduces to a benchmark New Keynesian model when these rates move
one-for-one, but in general r̃t 6= rt. Suppose that the effective rate is highly responsive to
the policy rate. Then household borrowing is also highly sensitive to the policy rate, and
therefore the growth rate of consumption will also react strongly to the policy rate. On
the other hand, when the effective rate is insensitive to the policy rate, the pass-through of
changes in the policy rate to households is weakened. Through the borrowing decisions of
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the household, the growth rate of consumption is less responsive to the policy rate. That is,

∂ dxt
∂rt

∝ ∂r̃t
∂rt

and moreover, the sensitivity of the change in the output gap to the policy rate will de-
termine the equilibrium reversion rate of monetary shocks. The higher the sensitivity, the
quicker output gaps revert to steady state. Inflation will follow a similar path since, due to
standard Phillips curve dynamics, inflation is the present discounted value of future output
gaps. Thus, through the central bank’s endogenous reactions to either output or inflation,
the policy rate also reverts back to steady state quickly.2

However, the sensitivity of the effective borrowing rate to the policy rate is an equilib-
rium object, which also depends on financial markets. Bond prices will adjust in order to
achieve equilibrium in bond markets, such that arbitrageurs’ portfolio allocation satisfies
their mean-variance tradeoff while also clearing the market given the demand from preferred
habitat investors. In this model, arbitrage is imperfect and the term structure will not be
characterized by the expectations hypothesis except under special circumstances. There-
fore, it is the risk-adjusted dynamics of the macroeconomy which determine bond prices in
financial markets, rather than the actual dynamics of the short rate only. For example, in
response to a monetary shock, the response of the yield of a τ bond will be roughly equal to
the risk-adjusted average of the short rate over the life of the bond. Thus, if the short rate
has a very high risk-adjusted mean reversion rate, long-term bond yields will not respond
much to shocks to the short rate. This force implies that increases in the risk-adjusted re-
version rate of monetary shocks lead to decreases in the sensitivity of all bond yields to the
policy rate. In particular, the effective borrowing rate also becomes less responsive.

General equilibrium is obtained when these two forces balance. Thus, characterizing
equilibrium involves two key steps: first, understanding the differences between the actual
and risk-adjusted dynamics of the economy; and second, linking household savings and
consumption choices with the bond prices determined in imperfect financial markets.

3 A Rigid Price Model

This section simplifies the model by assuming prices are fully fixed. This is an obviously
extreme assumption, but many of the key results can still be obtained in this case. The
upside is that the solution is considerably simpler, and I can sidestep determinacy issues
that arise when prices can adjust. I return to these questions in Section 4.

As discussed in Section 2, the difficulty in solving the model relative to standard New
2The sensitivity of the change in the output gap to the policy rate plays a similar role as the intertemporal

elasticity of substitution (ς−1). In this case, the responsiveness of household borrowing to the policy rate
is governed by preferences, namely the willingness to tolerate large changes in consumption across short
periods of time. But the outcome is the same: when changes in the output gap are sensitive to the policy
rate, the equilibrium rate at which shocks dissipate is high.
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Keynesian models is the mismatch between the effective borrowing rate and the policy rate.
The approach I take to solving the model is as follows. First, start with the conjecture
that bond prices are affine functions of the macroeconomic state variables. This allows the
macroeconomic dynamics to be transformed into a system of linear differential equations.
Next, conditional on the affine coefficients, solving for the rational expectations equilibrium
is straightforward. Then, I turn to solving for these affine coefficients by solving the arbi-
trageur’s portfolio problem. Finally, putting both sides of the model together, I character-
ize the unique general equilibrium solution.

After solving the model, I explore the implications for monetary policy. First I focus
on conventional policy, where the central bank sets the policy rate through a Taylor rule.
Then I study forward guidance by assuming the central bank instead announces a long-lived
interest rate peg. Finally, I study LSAPs by allowing the central bank to purchase longer-
term bonds on the secondary market. Throughout, I focus on how these policies affect the
macroeconomic dynamics of the model, and in particular how these effects depend on the
risk-bearing capacity of investors in financial markets.

3.1 Macroeconomic Dynamics

Prices are fully fixed when the parameter δ → 0. In this case, eq. (2) is simply

dxt = ς−1 (r̃t − r̄) dt . (5)

Again, consumption (and output) growth is increasing in the borrowing rate, but now
borrowing depends on some weighted average of the term structure of interest rates, given
by eq. (1).

I assume the central bank follows a Taylor rule with persistence:

drt = −κr(rt − φxxt − r∗) dt+ σr dBr,t , (6)

where Br,t is a standard Brownian motion and σr governs the size of the shocks. For now,
I assume that changes in the short rate are the only source of uncertainty. φx govern the
feedback rule for changes in output to changes in the policy rate. κr is a mean-reversion
parameter; if κr → ∞, eq. (6) simplifies to a (non-stochastic) Taylor rule with no gradual
adjustments in the policy rate.3r∗ is the central bank’s target policy rate, which it sets in
order to deliver a steady state with zero output gap. In a benchmark model where the
borrowing rate is the same as the policy rate, this is accomplished by setting r∗ = r̄, but
in this setup the optimal target is more complicated. I return to this in later sections.

Unlike a standard New Keynesian model, the interest rate rule does not close the model;
3The inertia term is present because empirically, central banks rarely change the policy rate by large

jumps. Rather than assume that the policy rule is subject to long-lasting shocks, I instead assume that
the policymaker prefers to smooth out changes over time (see Coibion and Gorodnichenko (2012) for an
overview).
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it is necessary to specify how the entire term structure of interest rates is determined in
equilibrium. I conjecture that the model features an affine term structure (which I will
confirm in the next section):

− logPt,τ = Ar(τ)rt + C(τ).

Bond prices are sensitive to changes in the short rate; the sensitivity of a τ -maturity bond
is governed by the coefficient function Ar(τ). Note this also implies the effective borrowing
rate can be written as

r̃t =

[∫ T

0

η(τ)

τ
Ar(τ) dτ

]
rt +

[∫ T

0

η(τ)

τ
C(τ) dτ

]
≡ Ârrt + Ĉ

and hence the IS curve given by eq. (5) becomes

dxt = ς−1
(
Ârrt + Ĉ − r̄

)
dt . (7)

In terms of the macroeconomic dynamics, the coefficients Âr and Ĉ are the only differ-
ence between my model and a standard New Keynesian model; setting Âr = 1 and Ĉ = 0

recovers the standard dynamics. From the perspective of understanding aggregate dynam-
ics, it is seen from eq. (7) that Âr is the key determinant of the responsiveness of consump-
tion growth to the policy rate. Additionally, the coefficient functions Ar(τ) and C(τ) are
equilibrium objects which will depend on the interplay of arbitrageurs and preferred habi-
tat investors in imperfect financial markets. In particular, Ar(τ) governs the sensitivity of
the price of a τ -bond to short-rate. Since the short rate is the only risk factor in the model,
Âr is the weighted average of risk sensitivity of the entire term structure. In general equi-
librium, Âr will have to satisfy both of these roles.

The affine functional form implies that the macroeconomic dynamics are governed by
a linear stochastic differential equation. I solve for the rational expectations equilibrium
following Buiter (1984), the continuous time analogue of Blanchard and Kahn (1980). In
general, let Yt = [yt xt]

T where xt are the “jump” variables and yt are the state variables.
Writing the model in general matrix form (in terms of deviations from steady state) gives

dYt = −Υ
(
Yt −YSS

)
dt+ S dBt . (8)

Under certain determinacy conditions, the rational expectations dynamics are given by

dyt = −Γ
(
yt − ySS

)
dt+ S dBt (9)

xt − xSS = Ω
(
yt − ySS

)
(10)
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where Γ and Ω are given by eqs. (C10) and (C11).4

In the current rigid price model, the output gap xt is the only jump variable, while the
interest rate rule implies that rt is the only state variable. The dynamics matrix Υ is given
by

Υ =

[
κr −κrφx

−ς−1Âr 0

]
.

Then the rational expectations equilibrium is determinate if and only if Υ has one stable
eigenvalue λ1; the general equilibrium dynamics simplify to

drt = −λ1(rt − rSS) dt+ σr dBr,t

xt − xSS = ωx(rt − rSS).

The equilibrium mean-reversion properties of the short rate are governed by λ1, while the
equilibrium response of the output gap to changes in the short rate are characterized by ωx.
The following Lemma characterizes the conditions under which the model is determinate
under rational expectations. Additionally, it characterizes the relationship between Âr, λ1,
and ωx. All proofs are in Appendix A.

Lemma 1 (Characterizing Âr, rigid prices). Consider the rigid price model.

1. Υ has exactly one eigenvalue with positive real part if and only if Âr > 0. Further, this
stable root is real: λ1 > 0.

2. Âr = h(λ1) where h : R+ → R:

h(λ) ≡ λ(λ− κr)
ς−1κrφx

. (11)

3. The output gap dynamics are given by

ωx = − ς
−1Âr
λ1

=
κr − λ1

κrφx
.

The first result in Lemma 1 says that the model is determinate when consumption
growth moves in the same direction as changes in the policy rate. This is a natural conjec-
ture, which I will confirm holds in general equilibrium. Since prices are fully fixed, changes
in the policy rate coincide with changes in the real short rate. Therefore, through standard
intertemporal decisions of the household, one would expect that a higher real borrowing
rate would lead to higher savings and thus increasing consumption into the future. How-
ever, this result is not immediate in my model because of the disconnect between the policy

4With an abuse of notation, I use the same symbols for the shocks S and Bt in the general dynamics
eq. (8) and the state space representation eq. (9).
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rate and the effective borrowing rate (even when nominal and real rates coincide). To show
that this result holds requires explicitly determining the term structure of interest rates.

The second and third results characterize Âr and ωx in terms of the macroeconomic
parameters and the equilibrium eigenvalues of the model. Note that when the model is
determinate, ωx < 0; this says that a positive (contractionary) shock to the policy rate
leads to an immediate decline in the output gap.

As discussed previously, Âr is pulling double duty: it governs both the sensitivity of the
term structure to risk, as well as the sensitivity of changes in the output gap to the policy
rate. Lemma 1 characterizes Âr in terms of the latter interpretation. Thus, the function
h(·) should be thought of as a mapping between ∂dxt

∂rt
(how sensitive the output gap is to the

policy rate) and λ1 (the equilibrium mean reversion rate of monetary shocks). This result,
together with the results in the next section, are used to solve for Âr in general equilibrium.

Focusing on the determinate case, a high degree of sensitivity of consumption growth
to the policy rate is associated with high mean reversion of the policy rate. Intuitively, in
this case borrowing decisions are highly responsive to the policy rate. An increase in the
level of the policy rate implies that households increase savings significantly; this leads to
an immediate drop in the level of consumption (hence output) and then a rapid increase in
consumption growth leading back to steady state. Through the endogenous response of the
monetary rule, this implies that the policy rate also quickly returns to steady state. That
is, a high Âr is associated with high λ1 and large (negative) ωx.

Conversely, as the sensitivity of output growth falls (Âr decreases towards zero), so
does the sensitivity of the level of the output gap (ωx approaches zero). Additionally, the
equilibrium reversion rate of the short rate λ1 approaches κr, the inertial term of the Taylor
rule. Note that h(λ1) is negative when 0 < λ1 < κr. That is, model indeterminacy implies
that in equilibrium monetary shocks mean revert slower than the inertial term of the Taylor
rule κr.

The general equilibrium value of the sensitivity of output growth and the mean reversion
rate of monetary shocks are of course endogenous. However, studying how the dynamics
of the model change as these parameters vary exogenously is illuminating. Because the
model only features two macroeconomic variables, phase diagrams can be used to study the
aggregate dynamics.

Figure 1 plots phase diagrams of the rigid price models for different values Âr, the
sensitivity of changes in the output gap to the policy rate. This leads to variation in the
equilibrium mean reversion rate of monetary shocks λ1. First, I consider a benchmark New
Keynesian model where the Euler equation depends only on the short rate. Equivalently,
in my model this corresponds to Âr = 1; with the given parameterization I consider this
implies λ1 ≈ 0.9. This model is shown in Panel A. Note that the stable arm (the solid blue
line) slopes downwards; after a contractionary monetary shock (increase in the short rate),
the output gap jumps down and then the economy moves along this arm back to steady
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Figure 1: Phase Diagrams, Varying Output Sensitivity to Policy Rate
Notes: phase diagrams of the rigid price model (in terms of deviations from steady state). The
solid blue line is the stable arm, while dashed black lines correspond to the trajectory of output
and the policy rate given two different initial values. Each panel corresponds to different values
of Âr and λ1. Higher sensitivity of output to the policy rate (↑ Âr) implies a faster mean
equilibrium reversion of monetary shocks (↑ λ1, the stable eigenvalue). The other parameters
are set to κr = 0.7, φx = 0.25, and ς−1 = 1.
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state. The dashed and dot-dashed lines show example (unstable) trajectories for the initial
conditions r = −1, x = 0 and r = 0, x = 1.

What happens if Âr is higher than this benchmark case? This would mean that in
equilibrium, monetary shocks revert faster towards steady state. In Panel B, I set Âr = 2.5,
which implies from Lemma 1 that λ = 1.1. Now the stable arm (the solid blue line) is much
steeper (more negatively sloped) than the benchmark case, meaning that monetary shocks
move output more than the benchmark prediction. The opposite is true when equilibrium
monetary shocks mean revert slower: for Âr = 0.2 so that λ1 = 0.8 in Panel C, the stable
arm is flattened.

Finally, at this point I cannot rule out the theoretical possibility that the model is in the
region of indeterminacy. In Panel D I set Âr = −0.3; that is, output growth is decreasing
as the policy rate increases. This implies that monetary shocks revert towards steady
state slowly (λ1 = 0.6). Now the “stable” arm is upward-sloping (which would imply a
contractionary monetary shock increases output), but note that this is no longer the unique
stable path. Any initial level of the short rate and the output gap will return to steady state.
The trajectories from initial conditions r = −1, x = 0 and r = 0, x = 1 shown by the dotted
and dash-dotted lines are seen to return to steady state, whereas in the previous examples
these were unstable paths. This is because, when Âr is negative, household borrowing
moves in the opposite direction as the policy rate, leading to model indeterminacy.

Which of these cases will occur in general equilibrium? When I bring in the term
structure side of the model, it will turn out that the relevant parameter space is one in which
monetary shocks mean revert more slowly than a benchmark model (where the effective
rate and policy rate coincide), but will still guarantee determinacy. In order to derive these
results, I now turn to explicitly modeling the term structure.

3.2 Term Structure Determination

To study limited arbitrage, I embed a “preferred habitat” model of the term structure
based on Vayanos and Vila (2009). Interest rates are determined by the interaction of two
types of investors: clientele investors with idiosyncratic demand for bonds, and risk-averse
arbitrageurs.

Given the affine functional form conjecture, I derive the optimality conditions of the
arbitrageurs. Ito’s lemma allows for the calculation of the instantaneous return of a τ bond,
and hence the mean and variance of the change of arbitrageur’s wealth. Arbitrageurs’
expectations are rational and hence in equilibrium they expect the state variables to evolve
according to eq. (9). For the case of a scalar state, the dynamics are given by

drt = −λ(rt − rSS) dt+ σr dBr,t . (12)

In equilibrium it will be the case that λ = λ1, the (only) positive eigenvalue of the matrix Υ
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described in the previous section. However, since arbitrageurs take as given the dynamics
of the short rate, it is useful to study how the term structure is determined for arbitrary
dynamics of the short rate, governed by any λ > 0.

Lemma 2 (Arbitrageur optimality conditions, scalar state). Suppose the short rate is char-
acterized by eq. (12) for some λ > 0. Then arbitrageurs choose a portfolio allocation such
that

µt,τ − rt = Ar(τ)ζt (13)

ζt ≡ aσ2
r

∫ T

0
bt,τAr(τ) dτ (14)

where µt,τ is the expected instantaneous return of a τ -maturity bond, given by eq. (A1).

In this simple rigid price model, conditional on the dynamics of the policy rate the
optimality conditions are the same as in Vayanos and Vila (2009). What this says is that
a τ bond’s expected excess return, µt,τ − rt, is proportional to its sensitivity to the short
rate, as measured by Ar(τ). This measure of proportionality is the same across all bonds,
and follows solely from the absence of (risk-free) arbitrage.

No-arbitrage implies that the amount of excess return per unit of risk is the same for
all bonds; this is ζt, the market price for risk. The expected excess return compensates
arbitrageurs for taking on additional risk, which in this case comes from the short rate
and so is fully characterized by the coefficient function Ar(τ). This compensation is higher
when risk aversion is high (a), volatility is high (σ2

r ); or their portfolio is already sensitive
to risk (the integral term in eq. (14)). The optimality conditions immediately imply that
when arbitrageurs are risk neutral (a = 0), expected excess returns of all bonds are zero,
and arbitrageurs are indifferent between holding any amount of bonds.

Arbitrageurs must hold the opposite of preferred habitat investors, whose demand is
given by eq. (4). In this section, I assume that the demand shifter βt,τ is independent of
time and deterministic: βt,τ ≡ β̄(τ). I will relax this assumption in later sections.

In equilibrium, prices must adjust such that arbitrageurs absorb the demand from pre-
ferred habitat investors and satisfy their mean-variance tradeoff. When arbitrageurs are
risk-neutral and only care about expected returns, they will want to buy (sell) any bond
with expected return greater than (less than) the risk-free rate. In this case, in equilib-
rium all bonds will have expected excess returns of zero and arbitrageurs will accomodate
any shifts in demand from preferred habitat investors, recovering the results of a standard
model of the term structure. But when arbitrageurs are risk averse, arbitrageurs will re-
quire non-zero excess expected returns to accomodate preferred habitat investors’ demand.
In this case, prices will depend on the arbitrageurs’ portfolio allocations.

Thus, when a > 0, their portofolio is endogenous. The demand for bonds from preferred
habitat investors along with the condition bt,τ = −b̃t,τ leads to equilibrium conditions that
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characterize the coefficient function Ar(τ) and C(τ) in terms of the dynamics of the short
rate.

Lemma 3 (Affine coefficients, scalar state term structure). Suppose the short rate is char-
acterized by eq. (12) for some λ > 0. Then Ar(τ) is given by

Ar(τ) = τf (ν(λ)τ) (15)

where f(x) = 1−e−x
x and

ν(λ) = λ+ aσ2
r

∫ T

0
α(τ)τ2f (ν(λ)τ)2 dτ . (16)

C(τ) is given by eq. (A2). Then Âr = g(λ) where g : R+ → R

g(λ) =

∫ T

0
η(τ)f (ν(λ)τ) dτ . (17)

The exponential function f(x) = 1−e−x
x is a common functional form which occurs

as solutions to differential equations such as these. The results from Lemma 3 help to
characterize the responsiveness of the term structure to the policy rate. It follows that
Ar(τ) > 0, and moreover the affine functional form of bond prices implies the following:

∂ logPt,τ
∂rt

= −Ar(τ) =
e−ντ − 1

ν

∂Rt,τ
∂rt

=
1

τ
Ar(τ) =

1− e−ντ

ντ

µt,τ − rt = Ar(τ)ζt =
1− e−ντ

ν
ζt.

Therefore, taking derivatives with respect to maturity τ gives:∣∣∣∣∂2 logPt,τ
∂rt∂τ

∣∣∣∣ > 0,
∂2Rt,τ
∂rt∂τ

< 0,

∣∣∣∣∂µt,τ − rt∂τ

∣∣∣∣ > 0.

That is, as maturity increases, bond (log) prices become more sensitive while bond yields
become less sensitive to the short rate. And as maturity increases, excess expected returns
grow in magnitude (the sign depends on ζt, the market price of short-rate risk).

Recall that from the perspective of aggregate dynamics, Âr is the key determinant of
the sensitivity of output growth to the policy rate (determined by the function h(·) derived
in Lemma 1). Additionally, from the perspective of term structure determination, Âr also
governs the weighted average sensitivity of bond yields to short-rate risk. Lemma 3 shows
that this is determined by the function g(·).

The key to characterizing the behavior of g(·) is the parameter ν. Intuitively, what is
ν, and how does it compare to λ? λ governs the actual dynamics of the short rate, while ν
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governs the dynamics of the short rate under the risk-neutral measure. When risk aversion
is non-zero, these parameters do not coincide. Eq. (16), which determines the parameter
ν, is a fixed point problem and so will not have a simple solution except in the case when
a = 0. But the proof of Lemma 3 shows that ν ≥ λ and is increasing in λ, with equality
if and only if a = 0. Since ν is increasing in λ, it follows that g′(λ) < 0. That is, bond
yields become less responsive to policy rate movements when monetary shocks revert faster.
Thus, the effective borrowing rate also becomes less sensitive.

The fact that ν ≥ λ says that the risk-adjusted average of the short rate over the life of
a long-term bond is lower than the expected average short rate over the same period. Thus

1

τ
Et

[∫ τ

0

∂rt+u
∂rt

du

]
= f(λτ) ≥ f(ντ) =

∂Rt,τ
∂rt

.

The expectations hypothesis implies that these two responses should be identical, which
occurs only when arbitrageurs are perfectly risk-neutral. Thus, this result says that long-
term yields under-react to changes in the short rate.

Putting everything together, Lemma 3 shows how the interaction of arbitrageurs and
preferred habitat investors characterizes the term structure. The arbitrageur’s portfolio
problem leads to a disconnect between the actual and risk-adjusted dynamics of the model.
This leads to the under-reaction of longer-term rates (and therefore the effective borrowing
rate) to changes in the policy rate. Further, if monetary shocks mean revert more quickly,
then long-term rates are less responsive to the policy rate. In turn, this implies that the
response of the effective borrowing rate to the policy rate is muted.

However, these are partial equilibrium results, which characterizes the affine coefficients
in terms of the parameters from the term structure side of the model, taking as given the
dynamics of the policy rate. The previous section documented a general equilibrium effect:
increases in the sensitivity of household borrowing to the policy rate leads to longer-lasting
monetary shocks. Formally, the results in these sections imply that increases in λ1 lead
to an increase in h(λ1) but a decrease in g(λ1). In general equilibrium, it must be that
Âr = h(λ1) = g(λ1), so these forces must balance. The next section characterizes this
interaction and solves for the general equilibrium solution.

3.3 General Equilibrium Solution

The results of Lemma 1 and 3 lead to a solution for Âr, which characterizes general equi-
librium. In this model, household borrowing decisions depend on the weighted average of
longer-term yields. Hence consumption growth also depends on the weighted average of
longer-term yields. Therefore, the sensitivity of output growth to the policy rate must co-
incide with the sensitivity of the effective borrowing rate to the policy rate. When output
growth reacts strongly to the policy rate, monetary shocks mean revert quickly. On the
other hand, due to the interaction of arbitrageurs and preferred habitat investors in im-
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Figure 2: Intersection of g(λ) and h(λ), rigid prices
Notes: intersection of the functions g(λ) and h(λ), which determine λ1

and Âr in equilibrium. The black line is h(·); the dashed light orange and
dash-dotted dark teal lines are g(·) for low and high levels of risk aversion,
respectively. The dotted grey line is the equivalent function g(·) for a
benchmark New Keynesian model (fixed at unity). The parameters are set
to κr = 0.4, φx = 0.25, ς−1 = 1, T = 10, α(τ) = e−0.1τ , σr = 0.1, η(τ) is
the pdf of a (truncated) Gamma distribution, and a ∈ {0, 5}.

perfect financial markets, short-lived monetary shocks lead to a low degree of sensitivity of
longer-term yields to the policy rate.

Recall h(·) determines the sensitivity of output growth to the policy rate, while g(·)
determines the sensitivity of longer-term yields to the policy rate. Both are a function of
the equilibrium rate of mean reversion of monetary shocks. In equilibrium, Âr will have to
satisfy both of these jobs. Prop. 1 characterizes λ1 and Âr.

Proposition 1 (General equilibrium, rigid prices). Consider the rigid price model. There
exists a unique positive eigenvalue of Υ λ1 > 0 for which g(λ1) = h(λ1), which fully
characterizes the model equilibrium. Further, this implies 0 < Âr < 1.

Figure 2 illustrates the equilibrium obtained in Prop. 1. In a benchmark New Keynesian
model, implicitly it is always the case that Âr = 1. This is because household borrowing
takes place entirely at the short rate, so through the lens of my model the effective borrowing
rate and the policy rate coincide. Once household borrowing depends on longer-term rates,
this one-to-one correspondence breaks down. In particular, since long-term rates respond
less than one-to-one with short rates, then Âr < 1. Figure 2 also shows that in equilibrium,
monetary shocks last longer than a benchmark model (lower λ1). Since monetary shocks
move long-term rates (and hence the effective borrowing rate) less than one-for-one, output
also moves less. This means that the endogenous response of the central bank is muted
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Figure 3: Rate Responses to Monetary Shock
Notes: responses of average short rates (solid lines) and spot rates (dotted lines)
in response to a unit policy rate shock. The first panel shows the response when
risk aversion is low (a = 1), while the second panel plots the responses when risk
aversion is high (a = 150).

relative to the benchmark, hence the shock mean reverts slower in equilibrium.
How does the sensitivity of long-term rates depend on the health of financial markets?

Figure 2 shows that Âr (the weighted sensitivity of long-term rates to changes in the short
rate) declines as risk aversion increases. In fact, the entire curve g(λ) shifts down. Recall
from the discussion of Lemma 3, there is a partial equilibrium effect that leads to an
under-reaction of long-term rates to changes in the policy rate. Due to financial market
imperfections, long-term rates under-react to monetary shocks relative to the predictions of
the expectations hypothesis. Moreover, this under-reaction becomes more severe as the risk-
bearing capacity of arbitrageurs declines. What are the general equilibrium implications of
this under-reaction?

Figure 3 plots of the responses the short rate and long-term rates to a monetary shock,
and explores the effects of increasing risk aversion graphically. Panel A corresponds to a low
level of risk aversion, while Panel B sets a higher value of risk aversion. In both panels, the
solid line is the average change in the average short rate over the course of τ periods, while
the dotted line is the immediate change in the yield of a τ bond. Under the expectations
hypothesis, the two responses would be identical. Hence as expected, in Panel A when risk
aversion is close to zero, the responses are very similar. But in Panel B where risk aversion
is high, the responses differ by quite a bit. The immediate response of long-term rates lies
well below the expected path of average short rates (which is the response of long-term
rates that would occur under the expectations hypothesis).

Interestingly, the response of the term structure under the expectations hypothesis
differs between the two experiments. This is due to the fact that the expectations hypothesis
implies that the response of long-term rates is solely determined by λ1, the mean reversion
of the short rate. But this is an equilibrium object, which depends on the risk aversion of
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arbitrageurs. In the parameterizations considered in these two experiments, in equilibrium
λ1 = 0.74 when risk aversion is low vs. λ1 = 0.67 when risk aversion is high. This can
be seen comparing the solid lines in each panel: the monetary shock lasts longer when risk
aversion is high in the second panel compared to the first.

3.4 Conventional Policy

What are the implications for monetary policy, and how do they differ from benchmark
models? Note that (from Lemma 3), the parameters governing the macroeconomic dynam-
ics (for example, κr and φx) only enter through the eigenvalue λ1. Fixing λ, the term struc-
ture side of the model is independent of these parameters. Similarly, from Lemma 1, the
term structure parameters (for example, a and σ2

r ) only enter through the coeffcient func-
tion Ar(τ). Fixing Ar(τ), the aggregate dynamics of the model are independent of these
parameters. Hence, for comparative statics, it is possible to make substantial progress de-
spite the complexity of the model.

Corollary 1.1 (Comparative statics, rigid prices). Consider the rigid price model. In
general equilibrium:

1. ∂λ1
∂a < 0, ∂Âr

∂a < 0, ∂ωx
∂a > 0. Moreover, Âr → 0, ωx → 0, and λ1 → κr as a → ∞.

Further, if a 6= 0, the same results hold for σr.

2. ∂λ1
∂κr

> 0, ∂Âr
∂κr

< 0, ∂ωx
∂κr

> 0.

3. ∂λ1
∂φx

> 0, ∂Âr
∂φx

< 0, ∂ωx
∂φx

> 0.

4. Consider two different weighting functions ηs(τ) and η`(τ), such that for some T ∗,
ηs(τ) ≥ η`(τ) ⇐⇒ τ ≤ T ∗. Then λs1 > λ`1, Â

s
r > Â`r, ω

s
x < ω`x where superscripts de-

note the equilibrium outcomes under the corresponding weighting functions.

Note that when household borrowing depends on long-term interest rates (so η(τ) > 0

for some τ > 0) it will always be the case that Âr < 1. This is because the effective
borrowing rate does not respond one-to-one with the policy rate. Partly this is somewhat
mechanical, and will be true even when arbitrageurs are risk neutral. In this case, the
response of long-term rates to a change in the policy rate will be equal to the average
change of expected future policy rates, and these shocks to short rates are not permanent
but instead mean-revert.

The first result in Cor. 1.1 says something more interesting: as the risk aversion of
arbitrageurs increases, household borrowing becomes less responsive to changes in the policy
rate. That is to say, Âr is decreasing in the risk aversion of arbitrageurs. This occurs
because long-term rates under-react to shifts in the expected path of short rates. In other
words, now the response of long-term rates to a change in the policy rate will be smaller
than the average change of expected future policy rates. This implies that current borrowing
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(and hence output) responds less than it would when financial markets exhibit perfect risk-
bearing capacity.

The fact that current macroeconomic outcomes are less responsive to future expected
policy changes bears a similarity to recent work that derives a “discounted Euler equation,”
as in Gabaix (2016) or Farhi and Werning (2017). But the mechanism here is not that, for
behavioral reasons, household forecasts deviate from the actual paths of future outcomes.
Rather, expected changes in policy are transmitted through imperfect financial markets,
which endogenously decreases the responsiveness of current macroeconomic variables to
future expected policy changes.

The model makes clear that monetary policy is effective only to the extent that policy
changes are transmitted through financial markets. In the model, the health of financial
markets is proxied by the risk aversion of arbitrageurs, which is a fixed parameter. But
more generally, risk aversion may increase during periods of financial panics (e.g. as in
Kyle and Xiong (2001)). This implies that monetary policy becomes less effective during
financial crises.

The next result relates to the persistence of the central bank’s policy rule (governed
by the mean reversion in the Taylor rule, κr). This governs the level of inertia in the
central bank’s policy rate (a higher value implies the rate returns to the target rate faster).
Recall that λ1 determines the equilibrium mean reversion behavior of the policy rate. So
unsurprisingly, if the central bank reduces the inertia in its policy rule (increases κr) then the
policy rate in equilibrium mean reverts faster (higher λ1); because policy rate gaps persist
for less time, the effective borrowing rate responds less to these monetary shocks (lower Âr).

The intuition regarding the central bank’s sensitivity to output (φx) is somewhat similar
to the inertia parameter. The central bank responds more forcefully to output gaps, so in
equilibrium the policy rate deviations subside faster (higher λ1). Because they are shorter
lived, output responds less as well.

How does the model depend on the weighting function, η(τ), that determines the effec-
tive borrowing rate? The final result in Cor. 1.1 answers this question. The two weighting
functions correspond to two models where the effective borrowing rate is more geared to-
wards short-term rates (ηs) or long-term rates (η`). The results says that as the effective
borrowing rate becomes more dependent on long-term rates, the model is less sensitive to
the policy rate. Further, in equilibrium this implies that monetary shocks persist longer.

3.5 Optimal Long-Run Monetary Target

Before turning to unconventional policy, I also solve for the “optimal” target in the central
bank’s policy rule r∗, which guarantees a steady state with zero output gap. In a benchmark
model the central bank simply sets r∗ = r̄, the natural short rate. But when the effective
borrowing rate depends on long-term rates, this is no longer the case. The central bank still
should set their target to the natural short rate; but the natural short rate differs from the
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household’s natural effective rate. Moreover, as with the transmission of monetary shocks,
the optimal target also depends on the risk-bearing capacity of financial markets.

Corollary 1.2 (Optimal long-run target, rigid prices). Consider the rigid price model.
Then the optimal target short rate that delivers xSS = 0 is the “natural” short rate, given by

r∗ =
r̄ − Ĉ
Âr

. (18)

Further, when a > 0, a higher level of habitat demand β̄(τ) leads to decreases in the optimal
target.

Note that the natural effective borrowing rate (which is the steady state value of the
effective borrowing rate) is r̃SS = r̄ and is determined by factors outside of the control of the
central bank (assumed to be fixed in this model). The effective borrowing rate is an affine
function of the short rate (both in transition and in steady state), and hence the natural
short rate is the steady state value of the short rate that delivers the natural effective rate:

r̃SS = r̄ = Ârr
SS + Ĉ.

When arbitrageurs are not perfectly risk-neutral, the constant term is affected by shifts in
habitat demand. Cor. 1.2 shows that as overall demand increases, the optimal central bank
target falls whenever arbitrageurs are not perfectly risk-neutral.

3.6 Forward Guidance

Given the key under-reaction result when financial markets exhibit limited risk-bearing
capacity, it is natural to expect that more explicit forward guidance policies will also prove
less effective. This section studies this policy and confirms this intuition.

Instead of following a Taylor rule for setting the short rate, suppose instead that the
central bank announces a target peg for interest rates r�, which will last for a set period of
time t� before returning to a standard Taylor rule. That is, the short rate evolves according
to

drt =

−κ�r(rt − r�) dt+ σ�r dBr,t if 0 < t < t�

−κr(rt − φxxt − r∗) dt+ σr dBr,t if t ≥ t�

and initially, the short rate at t = 0 is at the peg: r0 = r�. Note that this setup implies that
the peg is the target, but the policy rate may deviate from this target. The shocks to the
short rate are again the only source of uncertainty in order to keep the solution tractable.

The output gap still evolves according to eq. (5), but the dynamics of the effective
borrowing rate r̃t differ from the previous section. Conjecturing once again that bond prices
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are affine implies

− logPt,τ =

A�r(τ)rt + C�(τ) if 0 < t < t�

Ar(τ)rt + C(τ) if t ≥ t�
=⇒ r̃t =

Â�rrt + Ĉ� if 0 < t < t�

Ârrt + Ĉ if t ≥ t�
.

Now there are two sets of affine coefficient functions to solve for, corresponding to the
two different monetary regimes. But note that after the peg ends (t ≥ t�), the model
reduces to the one considered in Section 3. Further, during the peg (0 < t < t�), the results
derived previously can be utilized to solve for the term structure coefficients. Lemmas 2
and 3 still apply, with λ = κ�r .

With this characterization of the term structure during the two monetary regimes, I
now turn to solving for the rational expectations equilibrium dynamics, and in particular
the initial level of the output gap x0.

Proposition 2 (Forward guidance, rigid prices). Consider the forward guidance rigid price
model. In general equilibrium:

1. ∂x0
∂r� ≤ 0, is increasing in a, and approaches 0 as a→∞.

2. ∂2x0
∂r�∂t� ≤ 0, is increasing in a, and approaches 0 as a→∞.

As in a benchmark model of forward guidance, my model predicts that if the central
bank sets a very low interest rate peg, then the output gap falls (∂x0∂r� ≤ 0), and that this
effect grows as the duration of the peg lengthens ( ∂2x0

∂r�∂t� ≤ 0). The more interesting results
from Prop. 2 is how these forces interact with the level of risk aversion of arbitrageurs.
The first result says that the current output gap becomes less sensitive to the size of the
forward guidance shock as the risk-bearing capacity of arbitrageurs falls. Moreover, output
eventually becomes completely insensitive as arbitrageurs become infinitely risk averse. The
second part of Prop. 2 is an analogous finding for the interaction of the duration of an
interest rate peg and risk aversion. The effectiveness of lengthening the peg also diminishes
as arbitrageur risk aversion increases, eventually becoming completely ineffective.

Figure 4 shows this graphically. The dark “level” line corresponds to ∂x0
∂r� , while the

lighter “length” line corresponds to ∂2x0
∂r�∂t� . As risk aversion increases, both of this effects

are mitigated.
Intuitively, when financial markets are disrupted, the sensitivity of output to forward

guidance falls. Note that in this model, households are still very forward-looking: house-
holds are still very responsive to far-off changes in their borrowing rates, and so conditional
on the expected path of the effective borrowing rate the model delivers similar predictions
as a benchmark New Keynesian model. The mitigating effect comes from the mismatch
between the policy rate and the effective borrowing rate, which is bridged by imperfect fi-
nancial markets.
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Figure 4: Output Responses to Forward Guidance
Notes: plots of ∂x0

∂r� (“level”; the interaction of the level of the peg and
output) and ∂2x0

∂r�∂t� (“length”; the interaction of the length of the peg and
output). These objects are plotted for various levels of risk aversion (x-axis).

3.7 Quantitative Easing

While forward guidance is less effective when financial markets are disrupted, this imper-
fection opens the door to LSAP policies. Given that the expectations hypothesis does not
hold, purchases by the central bank may have price effects; moreover, it’s natural to think
that QE-type policies would push down long-term rates. This section studies this policy
and confirms this result.

I now suppose that in addition to setting the short rate, the central bank also directly
purchases longer term bonds through open market operations. In the model, these purchases
take place through the demand shifter βt,τ in preferred habitat investor demand given by
eq. (4). I assume that

βt,τ = β̄(τ) + θ(τ)βt

dβt = −κββt dt .
(19)

Note that this formulation treats LSAP programs as a zero-probability shock βt to preferred
habitat investor demand, which returns to zero at a rate according to κβ . The function
θ(τ) governs where in maturity space the purchases are targeted. To capture the essence
of a QE shock, I assume that θ(τ) ≥ 0 for all maturities (and strictly positive for some
maturities). This means that the central bank is only seeking to purchase positive amounts
of long-term bonds. This rules out LSAP programs like Operation Twist; I return to this
type of policy in an extension of the model in Section 5.5

5Were the QE programs demand or a supply shocks? By treating the central bank as another “preferred
habitat” investor, the model implicitly assumes that the QE purchases are (positive) demand shocks. But
if the central bank is thought of as a conglomerate with the fiscal authority, then QE purchases are perhaps
more naturally thought of as (negative) supply shocks: by buying bonds, the central bank acts on behalf of
the fiscal authority and removes these bonds from the secondary market. Whichever the preferred labeling,
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Now the affine functional form of bond prices implies that

− logPt,τ = Ar(τ)rt +Aβ(τ)βt + C(τ)

=⇒ r̃t = Ârrt + Âββt + Ĉ,

which introduces a new coefficient function Aβ(τ).
This change complicates the model, because there are now two state variables. However,

monetary policy remains the only source of uncertainty, so solving the model is similar to
the previous case. First, I solve the macroeconomic dynamics, taking as given the affine
coefficients. Write the model in matrix form according to eq. (8), where

Υ =

 κr 0 −κrφx
0 κβ 0

−ς−1Âr −ς−1Âβ 0

 .
Lemma 4 (Characterizing Âr and Âβ , rigid prices). Consider the rigid price QE model.

1. Υ has exactly two eigenvalues with positive real part if and only if Âr > 0. Further, these
stable roots are real. One of these eigenvalues is κβ, the other is λ1 > 0.

2. Âr is given by eq. (11).

3. The rational expectations equilibrium dynamic matrices (from eqs. (9) and (10)) are
given by

Γ =

[
λ1

Âβς
−1κrφx

λ1+κβ−κr
0 κβ

]
(20)

Ω =
[
κr−λ1
κrφx

ς−1Âβ
κr−λ1−κβ

]
. (21)

Next, given how the state evolves in general equilibrium, I solve the arbitrageurs’ op-
timality conditions and equilibrium allocations, which solves for the affine term structure
coefficient functions.

Lemma 5 (Affine coefficients, demand factor term structure). Suppose the short rate and
demand factor are characterized by

drt = −
(
γ1(rt − rSS) + γ12βt

)
dt+ σr dBr,t

dβt = −γ2βt dt .

in either case the outcome is the same. As the model makes clear, the effects are all about how the purchases
impact the marginal investors, the arbitrageurs. Whether QE is thought of as a demand or supply shock,
the result is that QE leads to changes in the portfolio allocation of arbitrageurs.
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Then Âr is given by eq. (17) (and ν given by eq. (16)). Âβ is given by

Âβ =
ν12

ν − γ2

∫ T

0
η(τ)(f(ντ)− f(γ2τ)) dτ (22)

where the coefficient ν12 is given by eq. (A3).

Note that, conditional on the equilibrium value of λ1, Âr is the same as the baseline rigid
price model. This also implies that Âβ , the sensitivity of the effective borrowing rate to QE
shocks, does not affect the determinacy of the model. In fact, if βt = 0, then the dynamics
of the model are identical to the baseline rigid price model. This is unsurprising, as in this
case QE is a zero-probability shock and hence the model evolves as if QE will never occur.

Proposition 3 (QE, rigid prices). Consider the QE rigid price model. Suppose that θ(τ) ≥
0. In general equilibrium:

1. Âβ ≥ 0 and ∂xt
∂βt
≤ 0, with equality if and only if a = 0.

2. Âβ → 0 as κβ →∞.

The coefficient Âβ determines the effects of QE in general equilibrium. The key is
under what conditions this coefficient is non-zero, and what sign. In words, Prop. 3 says:
if arbitrageurs are perfectly risk-neutral (financial markets exhibit perfect arbitrage), QE
has no effect. This is the standard result: the expectations hypothesis holds, and since QE
purchases do not change the expected path of short rates, there is no change in long-term
rates. More explicitly, with perfect risk-neutrality, arbitrageurs (the marginal investors in
bond markets) only care about expected instantaneous returns. In equilibrium it therefore
must be the case that these are equalized for all bonds (and equal to the policy rate). When
expected excess returns are always zero, arbitrageurs are happy to accomodate any shifts
in demand, hence in equilibrium yields are unchanged. Since long-term rates are unaffected
by QE purchases, there is no direct effect on household consumption or savings decisions,
therefore no indirect effect on the expected path of the policy rate.

But whenever arbitrageurs are risk-averse, LSAPs push down interest rates and boost
output. It is still the case that QE purchases do not have a (direct) effect on the expected
path of the policy rate. But when arbitrageurs care about risk, expected excess returns of
long-term bonds are not necessarily zero. Arbitrageurs demand compensation for taking on
risk, and in equilibrium the market price of risk is not zero. The price of risk depends on the
portfolio allocations of arbitrageurs, so the more concentrated the arbitrageurs’ portfolio is
in risky long-term bonds, the higher this compensation is required to be. By purchasing
long-term debt, QE effectively reduces the amount of risk arbitrageurs are required to hold,
which puts downward pressure on returns of all bonds.

This partial equilibrium effect is mitigated by a general equilibrium effect: when long-
term rates fall, so does the effective borrowing rate of households. Through the standard
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Euler equation dynamics, this implies that consumption (hence output) will rise. This
indirect effect puts countervailing upward pressure on long-term rates, as the expected path
of short rates is higher than before. But since arbitrageurs are risk-averse, this upward
pressure is weakened relative to the predictions of the expectations hypothesis. Prop. 3
shows that this indirect effect does not outweigh the direct effect, and it will still be the
case that in general equilibrium QE purchases will push down effective borrowing rates,
leading to an increase in output.

Together, these results show that the effectiveness of the two major unconventional
monetary policy tools are mirror images of one another. In either case, passthrough to
households only occurs to the extent that arbitrageurs respond to the policy changes. For
forward guidance, healthy financial markets are key as arbitrageurs only care about the
future path of the policy rate. But as financial markets become disrupted, arbitrageurs
become more concerned with risk and less responsive to future changes in the short rate.
Then this is precisely the time when LSAPs are most effective: by removing risk from the
portfolio of arbitrageurs, these purchases push down long-term interest rates and boost
output.

The second result in Prop. 3 shows that the effect of QE depends critically on the mean
reversion properties of purchases. Even when financial markets are highly disrupted, the
aggregate effects will be minimal if the purchases are undone very quickly. While in the case
of QE these purchases were not directly unwound quickly, Greenwood et al. (2016) provide
some evidence that Treasury actions had an equivalent effect. While QE was removing
long-term debt from private portfolios, the Treasury was extending the average maturity
of newly issued debt, perhaps partially offsetting the impact of QE.

4 Allowing for Sticky Prices

This section extends the analysis from Section 3 to allow for inflation. I confirm the results
in the case of fully rigid prices go through when prices are sticky but not fully fixed. The
main difference between the two models is the conditions for determinacy. In the rigid
price model, determinacy in general equilibrium was guaranteed. Once prices are not fixed,
determinacy is only guaranteed for some parameterizations of the model.

This result is also present in a benchmark New Keynesian model, and is often stated
as the following: the central bank must move the nominal rate more than one-for-one with
inflation, in order to move real rates. In benchmark models this is achieved by a simple
inequality condition on the Taylor rule coefficients (frequently φπ > 1). But because ag-
gregate dynamics depend on the household’s real effective borrowing rate, the determinacy
condition involves the entire term structure of interest rates. And since monetary policy is
transmitted to the term structure through imperfect financial markets, this condition will
implicitly depend on the risk-bearing capacity of arbitrageurs. As I will show, increasing
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limits to arbitrage moves the model towards the region of indeterminacy.

4.1 Macroeconomic Dynamics

Now I assume that prices are not fully rigid, so δ > 0 and inflation and the output gap
evolve according to eqs. (2) and (3). The central bank follows a Taylor rule with persistence:

drt = −κr(rt − φππt − φxxt − r∗) dt+ σr dBr,t (23)

where Br,t is a standard Brownian motion. φπ and φx govern the feedback rule for changes in
inflation and output to changes in the policy rate, and κr is the mean-reversion parameter.
r∗ is the central bank’s target policy rate, which is set to deliver zero inflation and output
gap in steady state.

Again start with the conjecture that the model features an affine term structure in the
state variables. Both inflation πt and the output gap xt are jump variables, while as before
the interest rate rule implies that rt is the only state variable, so the term structure is
characterized by two coefficient functions Ar(τ) and C(τ). Writing the model in matrix
form according to eq. (8) gives

Υ =

 κr −κrφπ −κrφx
0 −ρ δ

−ς−1Âr ς−1 0

 .
The rational expectations equilibrium is determinate if and only if Υ has one stable

eigenvalue λ1; under rational expectations the dynamics of the short rate and inflation and
the output gap are given by:

drt = −λ1(rt − rSS) dt+ σr dBr,t

πt = ωπ(rt − rSS), xt = ωx(rt − rSS).

The following Lemma characterizes the equilibrium object Âr in terms of this eigenvalue.

Lemma 6 (Characterizing Âr, sticky prices). Consider the sticky price model.

1. Υ has exactly one eigenvalue with positive real part if and only if

Âr >
δ

δφπ + ρφx
. (24)

2. Âr is given by the function h : R→ R:

h(λ1) =
(λ1 − κr)(λ2

1 + λ1ρ− ς−1δ)

ς−1κr (δφπ + ρφx + λ1φx)
. (25)
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3. The inflation and output gap dynamics are given by

ωπ =
δ(κr − λ1)

κr (δφπ + ρφx + λ1φx)
, ωx =

(λ1 + ρ)(κr − λ1)

κr (δφπ + ρφx + λ1φx)
.

The macroeconomic dynamics continue to nest the benchmark New Keynesian model,
where the affine coefficients are simply Âr = 1 and Ĉ = 0. When this is the case, if
the central bank only cares about inflation (so φx = 0), the determinacy condition eq.
(24) simplifies to the standard condition that φπ > 1. But in this model, Âr is a general
equilibrium object which will depend on the risk aversion of arbitrageurs. Thus, whether
the model satisfies determinacy will also depend on the level of risk aversion.

Note that as δ → 0, all the above results simplify to what was found in the case of fully
rigid prices studied in the previous section.

4.2 General Equilibrium Solution

The policy rate is the only state variable; hence, conditional on the equilibrium dynamics of
the policy rate, the arbitrageur optimality conditions and the characterization of the affine
coefficients is the same as when prices are fully fixed. Thus, the results of Lemma 6 and 3
together solve for Âr and λ1 in general equilibrium. This also allows for a characterization
of when the model has a unique equilibrium.

Proposition 4 (General equilibrium, sticky prices). Consider the sticky price model.

1. There exists some positive eigenvalue of Υ λ1 > 0 for which g(λ1) = h(λ1).

2. If the model is determinate (the inequality in eq. (24) is satisfied), then Âr < 1 and is
unique, which fully characterizes the model equilibrium.

Note that if eq. (24) is violated, there exists another eigenvalue λ2 > 0 such that
Âr = h(λ2). This implies the model is indeterminate. Âr may still be unique, but it may
also be the case that there is some 0 < λ′ < λ1 such that g(λ′) = h(λ′). Hence, rather than
attempting to define some selection criteria to re-establish determinacy, I choose to only
focus on models that satisfy the conditions for determinacy.

Figure 5 illustrates the equilibrium obtained in Prop. 4. The dotted light orange and
dark teal lines are g(·) for low and high levels of risk aversion, respectively. Unlike the rigid
price model, this plot illustrates that for some parameterizations (in this case, when risk
aversion is very high), equilibrium is no longer unique. Finally, I also plots the equivalent
function g(·) for a benchmark New Keynesian model (the dotted grey line). Note that
the determinacy condition of the benchmark model depends only on the properties of the
function h(·) (which is determined by the macroeconomic parameters); financial frictions
are not present.
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Figure 5: Intersection of g(λ) and h(λ), sticky prices
Notes: intersection of the functions g(λ) and h(λ), which determine λ1

and Âr in equilibrium. The black line is h(·); the dotted light orange and
dark teal lines are g(·) for low and high levels of risk aversion, respectively.
The dotted grey line is the equivalent function g(·) for a benchmark New
Keynesian model.

4.3 Conventional Policy

This section studies how conventional monetary policy works in the sticky price model.

Corollary 4.1 (Comparative statics, sticky prices). Consider the sticky price model. In
general equilibrium:

1. ∂λ1
∂a < 0, ∂Âr

∂a < 0, ∂ωπ
∂a > 0, ∂ωx

∂a > 0.

2. ∂λ1
∂κr

> 0, ∂Âr
∂κr

< 0, ∂ωπ
∂κr

> 0, ∂ωx
∂κr

> 0.

3. ∂λ1
∂φπ

> 0, ∂Âr
∂φπ

< 0, ∂ωπ
∂φπ

> 0, ∂ωx
∂φπ

> 0.

4. ∂λ1
∂φx

> 0, ∂Âr
∂φx

< 0, ∂ωπ
∂φx

> 0, ∂ωx
∂φx

> 0.

5. Consider two different weighting functions ηs(τ) and η`(τ), such that for some T ∗,
ηs(τ) ≥ η`(τ) ⇐⇒ τ ≤ T ∗. Then λs1 > λ`1, Â

s
r > Â`r, ω

s
π < ω`π, ω

s
x < ω`x where super-

scripts denote the equilibrium outcomes under the corresponding weighting functions.

The results in Cor. 4.1 confirm the results of the rigid price model carry over to the case
of sticky prices. The first result shows that the responsiveness of the (nominal) effective
borrowing rate to changes in the short rate declines as risk aversion increases. In general
equilibrium, when the model is determinate, this will imply that the real effective borrowing
rate also becomes less responsive, hence inflation and output also respond less to changes in
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the short rate as risk aversion increases. This also implies that monetary shocks become less
persistent. The final result, which shows what happens when household borrowing becomes
more concentrated towards long-term rates, has similar results. Borrowing becomes less
responsive to the short rate, and thus inflation and output also respond less to changes in
the short rate. In equilibrium, this implies that monetary shocks are not as persistent.

The other set of results relate to the central bank’s policy rule. Increases in the mean-
reversion parameter (κr), the sensitivity to inflation (φπ), and the sensitivity to output (φx)
all cause shocks to the policy rate in equilibrium to return to steady state faster (higher
λ1) and therefore the (nominal) effective borrowing rate responds less to these monetary
shocks (lower Âr). In general equilibrium when the model is determinate, this also leads to
smaller changes in inflation and output.

4.4 Determinacy

In the rigid price model, determinacy was guaranteed. This is no longer the case once prices
are not fixed. Moreover, the determinacy condition is more complicated than a benchmark
New Keynesian model.

Corollary 4.2 (Determinacy, sticky prices). Consider the determinacy condition of the
sticky price model. If δ > 0, there exists some upper bound a such that, whenever a > a, the
model is indeterminate. Similarly, there are upper bounds for κr and σr (if a 6= 0) above
which the model is indeterminate. For φπ and φx there exists upper bounds above which the
model is determinate.

From a macroeconomic perspective, the reason for indeterminacy in this model is anal-
ogous to a standard model. Suppose inflation increases. The central bank responds by in-
creasing the policy rate, but if the real borrowing rate faced by households does not rise then
the policy response is unable to stabilize the macroeconomy. This logic holds in my model,
but the relationship between the policy rate and the household effective borrowing rate is
complicated by the fact that policy changes are passed through by risk-averse arbitrageurs.

The first result in Cor. 4.2 says that if financial markets become severely disrupted, the
model moves into the region of indeterminacy. This is for the same reason that conventional
policy becomes less effective: the passthrough of policy rate changes to the (nominal)
effective borrowing rate becomes dampened, and this dampening can become severe enough
that the real effective borrowing rate no longer moves to stabilize the economy.

On the other hand, the central bank can guarantee determinacy given any level of
(finite) risk aversion by responding more aggressively to inflation (or output). Also, if the
policy rule does not exhibit enough inertia (that is, the mean reversion rate κr is very
high), this can also induce model indeterminacy. This is perhaps one theoretical reason
why central banks seem to pursue inertial policy rules. A high degree of monetary policy
inertia implies that changes in the policy rate are endogenously passed to long-term rates.
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When household borrowing depends on a mix of short- and long-term rates, this leads to
larger responses of output and inflation.

What does it mean in reality for a macroeconomic model to exhibit indeterminacy? As
discussed in e.g. Clarida et al. (2000), one practical way of thinking about indeterminacy is
that it induces excess volatility. When policy is such that it gives rise to an indeterminate
model, this opens up the possibility of self-fulfilling expectations. This may increase the
amount of volatility in the model.

In the model, the parameters governing both the central bank’s policy rule as well as
the risk aversion of arbitrageurs are fixed across time. But stepping outside the model,
what do the results in Cor. 4.2 say? One interpretation is that if financial crises are thought
of as large disruptions in financial markets, with big increases in risk aversion of investors
(or the risk-bearing capacity of investors), then financial crises can lead to macroeconomic
instability, even if the cause of the crises was unrelated to the macroeconomy.

Central bankers can induce stability again, but they can do so by becoming more ag-
gressive. This runs counter to the idea that central banks should become more passive in
crises, and make up for it after the crisis passes.

4.5 Forward Guidance

This section extends the previous analysis of forward guidance to the case of sticky prices.
As before, the central bank announces a target peg for interest rates r�, which will last for
a set period of time t� before returning to a standard Taylor rule. That is, the short rate
is evolves according to

drt =

−κ�r(rt − r�) dt+ σr dBr,t if 0 < t < t�

−κr(rt − φππt − φxxt − r∗) dt+ σr dBr,t if t ≥ t�

and initially, the short rate at t = 0 is at the peg: r0 = r�. Inflation and the output gap
still evolve according to eqs. (2) and (3).

Since the policy rate is the only state variable, the affine functional form is the same
as in the rigid price model. Using the same approach as before, I now turn to solving for
the rational expectations equilibrium dynamics and the initial level of inflation π0 and the
output gap x0.

Proposition 5 (Forward guidance, sticky prices). Consider the forward guidance sticky
price model. In general equilibrium:

1. ∂π0
∂r� ≤ 0 and ∂x0

∂r� ≤ 0. Both are increasing in a, and approach 0 as a→∞.

2. ∂2π0
∂r�∂t� ≤ 0 and ∂2x0

∂r�∂t� ≤ 0. Both are increasing in a, and approach 0 as a→∞.

Note that inflation and the output gap fall if the central bank increases the level of the
peg, and this effect grows with the length of the peg. So the first result of Prop. 5 says
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Figure 6: Inflation and Output Responses to Forward Guidance
Notes: panel A plots ∂π0

∂r� (“level”; the interaction of the level of the peg and inflation)
and ∂2π0

∂r�∂t� (“length”; the interaction of the length of the peg and inflation). Panel
B plots the corresponding level and length interaction terms for output x0. These
objects are plotted for various levels of risk aversion (x-axis).

that current inflation and output become less sensitive to the size of the forward guidance
shock as the risk-bearing capacity of arbitrageurs falls, and eventually become completely
insensitive; while the second result says the same regarding length of the peg.

Figure 6 shows the results regarding inflation and output graphically. The dark “level”
line in the first panel corresponds to ∂π0

∂r� , while the lighter “length” line corresponds to
∂2π0
∂r�∂t� . The second panel plots the same objects for the output gap x0. As risk aversion
increases, both of this effects are mitigated.

4.6 Quantitative Easing

I now modify the sticky price model to allow for QE shocks. Suppose that the central bank
also purchases long-term bonds, so that the demand shifter in eq. (4) evolves according to
eq. (19).

First, I solve the macroeconomic dynamics, taking as given the affine coefficients. Write
the model in matrix form according to eq. (8), where

Υ =


κr 0 −κrφπ −κrφx
0 κβ 0 0

0 0 −ρ δ

−ς−1Âr −ς−1Âβ ς−1 0

 .

Lemma 7 (Characterizing Âr and Âβ , sticky prices). Consider the sticky price QE model.

1. Υ has exactly two eigenvalues with positive real part if and only if the condition eq. (24)
is satisfied. Further, these stable roots are real. One of these eigenvalues is κβ, the other
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is λ1 > 0.

2. Âr is given by eq. (25).

3. The rational expectations equilibrium dynamic matrices are given by eqs. (A5) and (A6).

Given the equilibrium value of λ1, Âr is the same as the sticky price model. The
determinacy condition is also equivalent. As in the rigid price model, this is because I treat
QE as a zero-probability event. Moreover, conditional on how the state evolves in general
equilibrium, the arbitrageurs’ optimality conditions and portfolio problem is the same as
considered in Lemma 5. Therefore, putting everything together shows how QE shocks
impact the economy in general equilibrium.

Proposition 6 (QE, sticky prices). Consider the QE sticky price model. In general equi-
librium, the model is determinate then

Âβ ≥ 0 =⇒ ∂πt
∂βt
≤ 0,

∂xt
∂βt
≤ 0

with equality if and only if a = 0.

Prop. 6 confirms that in the sticky price model, when the determinacy condition is
satisfied QE works in the same way as in the rigid price model. Expansionary QE shocks
move both inflation and output in the same direction, but only when arbitrageurs are not
risk-neutral.

5 General Numerical Model

The analysis thus far has focused on delivering analytical results, but this comes at the
cost of realism. This section generalizes the model in order to move closer to the data and
allows me to take a first step towards quantifying the effects of unconventional policies in
and out of financial crises.

This section first extends the model to allow for a richer set of shocks and develops the
tools to solve the model numerically. Since this requires taking a stance on parameter values,
I next turn to estimating the model. I then use the estimated model to quantify the effects
of unconventional policies. The extended model allows for the study of not only standard
QE policies, but also more complicated LSAP programs such as Operation Twist, where
the Federal Reserve bought long-term bonds while selling shorter term securities. I also
study a counterfactual LSAP policy whereby the central bank conducts QE endogenously
according to a Taylor-type of rule. Finally, I use the model to study optimal policy as a
function of financial frictions.
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5.1 Macroeconomic Dynamics and Term Structure Determination

I assume prices are sticky but not fully rigid. Besides monetary policy shocks, I add
demand shocks and cost-push shocks. I also include shocks that shift demand for bonds
coming from the idiosyncratic preferred habitat investors. This model allows me to explore
the robustness of the results in the previous section, as well as explore the implications
for unconventional monetary policy. Adding multiple demand factors not only makes the
model more realistic, but also allows me to explore more complicated LSAP programs such
as Operation Twist, where the Fed simultaneously purchased and sold Treasuries of long-
and short-term maturities, respectively.

The aggregate dynamics of the extended model are as follows:

dπt = (ρπt − δxt − zπ,t) dt (26)

dxt = ς−1 (r̃t − πt − r̄ − zx,t) dt (27)

drt = −κr(rt − φππt − φxxt − r∗) dt+ σr dBr,t . (28)

The new aggregate variables are a cost-push shock to the Phillips curve (zπ,t) and a demand
shock to the Euler equation zx,t.These shocks follow simple Ornstein-Uhlenbeck processes:

dzi,t = −κzizi,t dt+ σzi dBzi,t .

Additionally, I assume there are factors βk,t that affect the demand of preferred habitat
investors. These shocks also follow simple Ornstein-Uhlenbeck processes:

dβk,t = −κβkβk,t dt+ σβk dBβk,t .

This is the only change to the term structure side of the model: the demand shifter βt,τ
from idiosyncratic preferred habitat investors is given by

βt,τ = β̄(τ) +
∑
k

βk,tθk(τ)

where θk(τ) governs how shifts in the demand factor βk,t affects the level of demand for
τ bonds. Unlike the QE models explored in previous sections, the habitat demand factors
are now stochastic.

As before, start with the conjecture that bonds are affine in the state variables. Now the
state consists of the short rate rt, the demand shock and cost push shocks zx,t and zπ,t, and
the preferred habitat demand factors βk,t. If Yt is the vector of all variables and the state
is denoted by a vector yt, then effective rate is therefore also affine in the state variables:

r̃t = yTt Â + Ĉ, (29)
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and the preferred habitat demand shifter is

βt,τ = β̄(τ) + yTt Θ(τ)

where Θ(τ) is a vector of that collects the θk(τ) functions corresponding to each βk,t demand
shocks (and is zero for the other state variables).

Using matrix notation, the dynamics matrix from eq. (8) is a function of the affine
coefficients Â from eq. (29). Therefore, so is the state dynamics matrix Γ(Â), given by eq.
(C10). Prop. 7 characterizes the affine coefficients and general equilibrium solution in this
setup.

Proposition 7 (General equilibrium characterization). Suppose the aggregate economy
evolves according to eq. (8), where the dynamics matrix is a function of affine coefficients
Â in eq. (29). Define the matrix

M = Γ(Â)T − a
[∫ T

0
α(τ) (τΘ(τ)−A(τ)) A(τ)T dτ

]
Σ (30)

as a function of Â. Letting e1 be the first standard basis coordinate vector, if M is diago-
nalizable and invertible then A(τ) solves

A(τ) = GD−1 [I− exp(−Dτ)] 1 (31)

=⇒ Â = GD−1

∫ T

0

η(τ)

τ
[I− exp(−Dτ)] dτ 1 (32)

where D is the diagonal matrix of the eigenvalues of M, and G is the matrix of correspond-
ing eigenvectors, normalized such that G1 = e1, where 1 is a vector of ones and e1 is the
first standard basis coordinates. Then the general equilibrium solution is a fixed point of the
matrix function defined in eq. (30).

Note that the matrix M is nothing more than the multidimensional generalization of
the scalar ν from Lemma 3. Thus Prop. 7 is similar to the fixed point problem which defines
the parameter ν, but is now complicated by the fact that the problem is no longer scalar-
valued. Except in special cases such as when a = 0, the problem no longer lends itself to
tractable solutions but instead must be solved numerically. An algorithm for solving the
model is described in Appendix B.

5.2 Calibration

In order to implement the numerical solution method I need to parameterize the model. I
calibrate the model by separating the parameters into two groups: the macroeconomic dy-
namics parameters and the term structure preferred habitat parameters. The macroeco-
nomic parameters consist of: the weighting function in the effective borrowing rate (η(τ));
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the preference parameters (ρ and ς−1); nominal rigidity (δ); the Taylor rule coefficients (φπ
and φx); the mean reversion of monetary shocks, cost-push shocks, and demand shocks (κr,
κzπ , and κzx); and the volatility of these shocks (σ2

r , σ2
zπ , and σ2

zx). The term structure
parameters consist of: arbitrageur risk aversion (a); preferred habitat demand elasticities
(α(τ)); the number and location of demand factors (θk(τ)); and the mean reversion and
volatility of these demand factors (κβk and σ2

βk
).6

I estimate the first group of parameters using data from the U.S. from 1985-2007. Since
1985-2007 was largely a period of financial calm in the U.S., I estimate these parameters
by assuming a ≈ 0. Given estimates of the macroeconomic parameters, I estimate the term
structure parameters in a second step by focusing on the term structure response to QE
during 2009.

5.2.1 Effective Borrowing Rate Weights

A key input is the weighting function in the effective borrowing rate η(τ). This function
governs the household allocation of borrowing across the term structure, and therefore the
sensitivity of the effective borrowing rate is to short- and long-term rates.

I set η(τ) to match the average maturity structure of outstanding U.S. Treasury Bills,
Notes, and Bonds from 1985-2007; data is from the monthly CRSP U.S. Treasury database.
While it would be possible to match this distribution non-parametrically, as explained in
Appendix B the numerical algorithm to solve the model requires being able to solve closed-
form solutions to many integral expressions involving η(τ). To that end, I assume that η(τ)

is equal to the probability density function of a (truncated) Gamma distribution with shape
parameter 2 and rate parameter η1 (or scale parameter 1/η1), so η(τ) ∝ τ exp(−η1τ). I
estimate the rate parameter η1 in order to minimize the distance between the parameterized
η(τ) and the distribution of outstanding U.S. Treasuries.

5.2.2 Macroeconomic Parameters

In order to estimate the parameters governing the macroeconomic dynamics, I take a
moments-matching approach. I target 9 moments in the data: the variance of the short
rate, inflation, and the output gap; the respective covariances; and the respective one-year
autocovariances. I use data from the U.S. from 1985-2007. For the short rate I use the 3-
month Treasury Bill rate; for inflation I use PCE; and for the output gap I use the CBO’s
nominal potential GDP. The data series are from FRED.

I choose the period 1985-2007 because this was largely a period of financial calm. Hence,
I solve the model and compute the model analogues of the variance-covariances assuming
that risk aversion a = 0. This also allows me to defer estimating many of the parameters

6The remaining parameters β̄(τ), r̄, and r∗ affect the steady state but play no role governing the dynamics
of the model; I focus on equilibrium dynamics linearized around a zero steady state. Formally, I assume
that given any parameterization, the central bank sets the target rate r∗ to deliver a zero steady state as
discussed in Cor. 1.2.
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from the finance side of the model. I additionally set ς−1 = 1 and the discount factor
ρ = 0.04. This leaves 9 parameters to be estimated: the inertia terms κr, κzπ , and κzx ; the
Taylor rule coefficients φπ and φx; the nominal rigidity term δ; and the shock variances σ2

r ,
σ2
zπ , and σ

2
zx .

Since I have 9 parameters to estimate, the model is able to match the target 9 moments
perfectly. Although each moment is sensitive to each parameter, intuitively it is useful to
discuss which moments respond most strongly to which parameters. The auto-covariances
are largely dependent on the inertia terms, while the overall volatility of the economy is a
function of the volatility of the fundamental shocks. Finally, the covariances between the
short rate, inflation, and the output gap depend on the degree of nominal rigidity and how
the central bank changes the policy rate in response to deviations in inflation and output.

5.2.3 Term Structure Parameters

The other set of parameters to estimate come from the preferred habitat side of the model.
I estimate these parameters in order to match the change in the yield curve following the
FOMC announcement regarding QE1 on March 18, 2009. Since the model makes predictions
about zero-coupon yields, the response I target is the daily change in zero-coupon yields as
taken from Gurkaynak et al. (2007).

Before estimating the model, I make some simplifying assumptions. First, I assume
that there are two demand factors βs,t and β`,t that are otherwise identical (same inertia
parameter κβ and variance σ2

β) but concentrated at short and long maturities (different
functions θs(τ) and θ`(τ)). I assume that these functions are entirely concentrated at
maturities of length 2 and 10 years, respectively.7 Second, I assume that the preferred
habitat demand elasticities α(τ) are constant across maturities. Since the risk aversion
coefficient a always enters multiplicatively with α(τ), I normalize α(τ) = 1. Hence, the
estimated coefficient a should be interpreted as a mix of both the arbitrageur’s preferences
for risk as well as the preferred habitat investor’s sensitivity to price movements. The
remaining parameters to be estimated are the inertia parameter κβ , variance σ2

β , and the
risk aversion term a. In the model, I assume that QE1 was a ten standard deviation shock;
this coincides with the findings in Gorodnichenko and Ray (2017) that QE purchases were
roughly ten times larger than typical private demand shocks for long-term Treasuries.

5.2.4 Calibration Results

Table 1 summarizes the results of the calibration. In this section I briefly discuss the results
in more detail.

During 1985-2007, on average roughly 40% of Treasury debt was less than one year, 35%
7Formally, I assume that the functions θs(τ) = δ(τ − 2) and θ`(τ) = δ(τ − 10), where δ(·) is the Dirac

delta function. The Dirac delta function can be interpreted as the limit of a mean=zero normal distribution
as the variance approaches 0.

40



Table 1: Calibration Results

Parameter Value Description Target

Effective Borrowing Rate

η1 1.7069 Weight Scaling Factor Treasury Maturity Distribution

Macroeconomic Dynamics

ρ 0.0400 Discount Factor Long-Run Interest Rate
ς−1 1.0000 Intertemporal Elasticity Balanced Growth
κr 0.9473 Monetary Policy Inertia Cov[rt, rt−1] = 3.5013

κzπ 0.5863 Cost-Push Shock Inertia Cov[πt, πt−1] = 0.9141

κzx 0.2554 Demand Shock Inertia Cov[xt, xt−1] = 2.2908

φπ 2.0420 Inflation Taylor Coeff. Cov[rt, πt] = 1.0006

φx 0.9709 Output Taylor Coeff. Cov[rt, xt] = 0.7722

δ 0.0459 Nominal Rigidity Cov[πt, xt] = −0.3015

σr 0.0116 Monetary Shock Vol. Var[rt] = 2.7066

σzπ 0.0068 Cost-Push Shock Vol. Var[πt] = 0.5097

σzx 0.0126 Demand Shock Vol. Var[xt] = 1.5192

Term Structure

θs(τ) δ(τ − 2) Short Factor Location LSAP Targets
θ`(τ) δ(τ − 10) Long Factor Location LSAP Targets
α(τ) 1.0000 Habitat Elasticity Normalized
κβ 0.1710 Habitat Factor Inertia QE1 Yield Curve Response
σzβ 0.0142 Habitat Factor Vol. QE1 Yield Curve Response
a 1559.7 Risk Aversion QE1 Yield Curve Response
Notes: results of the calibration exercise. The effective borrowing weight term η1 is the rate factor in a
(truncated) Gamma distribution: η(τ) ∝ τ exp(−η1τ). For the macroeconomic dynamics coefficients,
each parameter is listed alongside the covariance target which is most sensitive to changes in the given
parameter; however, the parameters are jointly estimated in order to match all the target moments.
Variances and covariances are expressed in percentage points. The short and long demand factor
location functions are Dirac delta functions δ(·).
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Figure 7: Estimated Borrowing Weights η(τ)
Notes: the estimated effective borrowing weights η(τ) and the distribution of
outstanding Treasury debt in the data.

was between 1 and 5 years, and the remaining 25% was between 5 and 30 years. Targeting
these moments, I estimate that the rate parameter in the (truncated) Gamma distribution is
η1 ≈ 1.7. As Figure 7 shows, the model analogue matches the short end of the distribution
but somewhat understates the fraction of long-term debt. Although the concentration is
highest for shorter maturities, the weighting implies that over 60% of the distribution of
borrowing is weighted towards maturities over 1 year. This will imply substantial deviations
from benchmark models where borrowing is entirely concentrated at the short rate.

Figure 8 compares the yield curve response to QE1 in the data vs. the model.

5.3 Responses to Conventional and Unconventional Monetary Shocks

Using the estimated parameters, I now explore the implications for monetary policy in
general equilibrium. I study the model for varying degrees of risk aversion; from very low
a ≈ 0 to even higher than the the level estimated during the QE1 period, in order to
understand how policy interacts with different degrees of financial crisis.

5.3.1 Expansionary Monetary Shock

I first study the macroeconomic response to a standard monetary shock. The shock is a 50

basis point fall in the policy rate (an expansionary shock).
The first panel of Figure 9 plots the immediate response of the yield curve (in terms of

deviations from steady state). Lighter lines plot the response for low levels of risk aversion;
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Figure 8: Yield Curve Response to QE1, Model vs. Data
Notes: the estimated yield curve response to a QE shock as compared to the
actual response.

the darker lines correspond to high levels of risk aversion. When risk aversion is very low,
the entire yield curve shifts down significantly. But as risk aversion increases, the darker
lines begin to move closer to zero. While short-term rates still respond strongly, long-
term rates become nearly unresponsive. The expected path of the policy rate is not that
different, but arbitrageurs do not equalize the expected returns of all bonds and hence long-
term rates under-react to the change in the policy rate.

The bottom panels of Figure 9 plot the immediate responses of output and inflation,
with the level of risk aversion on the x-axis. These results show that as risk aversion
increases, the immediate macroeconomic effects of a monetary shock fall. This follows from
the results regarding the yield curve. Since the entire yield curve becomes less responsive
to a given monetary shock, the household effective borrowing rate similarly responds less.
Hence the consumption response (and output gap response) is smaller. Smaller output gaps
into the future imply that inflation also responds less.

The exercise in Figure 9 also allows for a quantification of the relative effectiveness of
monetary policy in and out of financial crises. Comparing the output response to a monetary
shock during normal times (a ≈ 0) to periods of high financial distress (the dotted black
line, corresponding to the estimated value of risk aversion a), output responds by about
20% less to a monetary shock in a financial crisis than out. As risk aversion increases, the
effectiveness falls even further. This suggests that had the zero lower bound on the policy
rate had not been binding (or alternatively, had the Fed pursued a policy of negative rates),
monetary policy still would have struggled to boost output during the recent financial crisis.
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Figure 9: Monetary Policy Shock
Notes: Panel A is the contemporaneous response of the yield curve to a 50 basis
point monetary policy shock. Responses are plotted as deviations from steady
state, in terms of basis points. The x-axis is maturity. Lighter lines correspond to
models where risk aversion is low; darker lines to models with high risk aversion.
Panels B and C are the contemporaneous response of inflation and the output
gap to the same shock. Responses are plotted as deviations from steady state,
in terms of percentage points. The x-axis is level of risk aversion. The dotted
black line corresponds to the estimated level of risk aversion.
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Figure 10: QE Shock (short-term purchases)
Notes: Panel A is the contemporaneous response of the yield curve to a QE
shock, where purchases are concentrated at shorter term bonds. Responses are
plotted as deviations from steady state, in terms of basis points. The x-axis is
maturity. Lighter lines correspond to models where risk aversion is low; darker
lines to models with high risk aversion. Panels B and C are the contemporaneous
response of inflation and the output gap to the same shock. Responses are plotted
as deviations from steady state, in terms of percentage points. The x-axis is level
of risk aversion. The dotted black line corresponds to the estimated level of risk
aversion.

5.3.2 QE Shocks

I now study the response to two types of QE shocks. In the model, these correspond to
shocks to the demand factors which I label as βs,t (short-term shock, purchases concen-
trated at 2-year maturities) and β`,t (long-term shock, purchases concentrated at 10-year
maturities).

Figure 10 plots the response to a shock to the short demand factor βs,t. The top panel
plots how the yield curve changes immediately, where darker lines correspond to increasing
levels of risk aversion. The bottom panels plot immediate responses of output and inflation
(with the level of risk aversion on the x-axis).

When risk aversion is very low, there is little to no response to a QE shock. This is
because arbitrageurs are able to fully absorb the purchases without requiring any changes
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Figure 11: QE Shock (long-term purchases)
Notes: Panel A is the contemporaneous response of the yield curve to a QE
shock, where purchases are concentrated at longer term bonds. Responses are
plotted as deviations from steady state, in terms of basis points. The x-axis is
maturity. Lighter lines correspond to models where risk aversion is low; darker
lines to models with high risk aversion. Panels B and C are the contemporaneous
response of inflation and the output gap to the same shock. Responses are plotted
as deviations from steady state, in terms of percentage points. The x-axis is level
of risk aversion. The dotted black line corresponds to the estimated level of risk
aversion.

in the returns of their portfolio. This implies that there is very little reaction in the yield
curve, hence there is little feedback to household borrowing. But as risk aversion increases,
the effects increase. Again this is due to the behavior of arbitrageurs. QE purchases offload
some risk from the portfolio of arbitrageurs. Hence, they require smaller excess returns to
hold other bonds, which pushes down interest rates. This leads to a decline in the effective
borrowing rate of households, which boosts consumption (and hence output) on impact.

Figure 11 repeats the above exercise for shocks to the long demand factor β`,t. Once
again, there is nearly no response when arbitrageurs are close to risk neutral; as risk aversion
increases, so too does the magnitude of the response of the yield curve and macroeconomic
variables.

The intuition is similar for both “short” and “long” QE shocks, but comparing the
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differential impacts also reveals interesting results. Studying the yield curve responses in
Figures 10 and 11 reveals that there are four “regimes” where the yield curve responses
are qualitatively different. The first regime corresponds to very low levels of risk aversion,
where QE shocks have essentially no effect. In the second regime, when financial markets
are somewhat disrupted, both QE shocks put downward pressure on interest rates but the
response of the yield curve to both short-term and long-term purchases is very similar
in shape. The response is hump-shaped, with the peak response occurring at shorter to
intermediate maturities, and pushes both short- and long-term spot rates in the same
direction. Only the magnitude differs, with the long-term shock leading to somewhat larger
responses.

However, when risk aversion becomes sufficiently high, the effects become more localized.
This is the third regime, when financial markets start to become severely disrupted; this
regime corresponds to the level of risk aversion estimated from the QE1 data. In this
case, both long and short QE shocks push down all interest rates, but now short-term QE
purchases have larger effects on short-term yields than long-term QE purchases. Finally,
the fourth regime corresponds to extreme levels of financial crisis (higher than what was
estimated). The localization of demand shocks becomes so extreme that long-term demand
shocks actually lead to increases in short-term rates, while short-term demand shocks also
put upward pressure on long-term rates.

The increasing localization of demand shocks is a key partial equilibrium result from
Vayanos and Vila (2009); this exercise shows that the finding holds in general equilibrium.
What causes this localization? Intuitively, consider the limiting case when arbitrageurs only
want to minimize the variance of the change in their wealth. Hence they allocate their entire
portfolio to the short (risk-free) rate, taking no positions in any other longer-term bonds.
In response to a long-term demand shock from preferred habitat investors, arbitrageurs
would be unwilling to make any changes their portfolio allocation to accomodate the shift.
The only way for the net supply condition to be satisfied is if the prices of the bonds that
are affected by the demand shock respond. Moreover, these are the only bonds that see
price changes. In other words, the demand shock has only local effects.

Of course, even when arbitrageurs are very risk-averse, the bond market will not exhibit
this type of extreme segmentation. But the qualitative behavior of the term structure
response is different for low and high levels of risk aversion. When risk aversion is low,
demand shocks have a (small) effect, but the location of the shock does not matter. A
the key source of risk that arbitrageurs are concerned with is short-rate risk. Every bond
has some sensitivity to this source of risk, hence shifts in demand from preferred habitat
investors change the portfolio allocations of arbitrageurs. Thus this changes the market
price of short-rate risk, and as this impacts all bonds this has a global effect regardless of
where the demand shock originates. For example, in response to positive demand shifts,
arbitrageurs sell bonds, reducing their exposure to short-rate risk. Hence they require lower
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expected returns to hold bonds, pushing down rates. The bonds that respond the most are
those most sensitive to short-rate risk, which does not depend on the location of the shock,
but only on the stochastic (mean-reversion) properties of the shocks.

But when risk aversion is very high, the location of the shock matters. When risk
aversion is very high and there are multiple sources of risk (short-rate risk, multiple demand
factors, and other structural shocks), arbitrageurs try to limit their exposure to these sources
of risk. This means that demand shocks must have mostly local effects, since otherwise
arbitrageurs would be exposing themselves to other sources of risk. In other words, if a
demand shock for long-term debt had big effects on short-term debt, this would be because
arbitrageurs were making large changes to their holdings of short-term debt. But this
changes their exposure to other sources of risk. Hence they choose not to integrate the
markets across maturities, and the shocks stay more localized.

5.3.3 Operation Twist Shock

Next, I look at a policy mimicking “Operation Twist,” where the Federal Reserve purchased
long-term securities and sold short-term securities. To model this, I analyze the effect of
a simultaneous increase in long-term purchases (β`,t) and decrease in short-term purchases
(βs,t). Figure 12 plots the yield curve and real responses.

The previous QE exercises showed that when risk aversion is low, the yield curve reacts
similarly to the short and long demand factors; the only difference is the magnitude of the
response to the long demand factor is larger. When the two shocks are combined but with
opposite signs, this implies that the long demand factor dominates, leading to a decline in
the term structure. The macroeconomic response is thus a similar but muted version of the
QE responses observed previously.

Recall that in the calibration, the effective borrowing rate is weighted mostly towards
maturities between 1 and 5 years; there is little weight on interest rates 10 years and above.
However, when financial markets are relatively healthy (“regime 2” discussed above), it is
still the case that QE purchases concentrated at long-term rates is more effective at push
up output than short-term purchases.

But as can be seen in Figure 12, when risk aversion is high enough, the short and
long demand factors have differential impacts on the yield curve. The combination of the
two shocks leads to declining long-term rates, but at some point leads to increasing short-
term rates. For intermediate values of risk aversion, real effective borrowing rates still fall,
leading to increases in output and inflation. However, as risk aversion continues to increase,
the magnitude of the macroeconomic effects declines. For high values of risk aversion, the
sign eventually flips: after the Operation Twist shock, both inflation and the output gap
actually decline.

The exercise implies that if Operation Twist had taken place during March 2009 when
risk aversion was very high (the dotted black line in the bottom panels of Figure 12),
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Figure 12: QE Shock (long-term purchases)
Notes: Panel A is the contemporaneous response of the yield curve to an Op-
eration Twist shock, where longer term bonds are purchased and shorter term
bonds are sold. Responses are plotted as deviations from steady state, in terms
of basis points. The x-axis is maturity. Lighter lines correspond to models where
risk aversion is low; darker lines to models with high risk aversion. Panels B and
C are the contemporaneous response of inflation and the output gap to the same
shock. Responses are plotted as deviations from steady state, in terms of per-
centage points. The x-axis is level of risk aversion. The dotted black line corre-
sponds to the estimated level of risk aversion.
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the aggregate effect would have actually been contractionary. Moreover, the actual yield
curve responses around September 21, 2011 (when Operation Twist was announced by the
FOMC) saw long-term rates fall while short-term rates increased slightly. While financial
market disruptions in 2011 had subsided relative to the peak of the crisis, this suggests
that financial frictions were still high. Hence, the aggregate effects of Operation Twist were
likely muted at best.

One key result in all of these exercises is that the transmission of these policies depends
crucially on the health of financial markets. As with conventional monetary policy explored
in previous sections, the effectiveness of QE policies varies with the level of risk aversion of
arbitrageurs. But the interaction is the opposite of conventional policy. QE has no effect
when arbitrageurs are risk neutral; as risk aversion increases, QE becomes more and more
effective at moving the yield curve and hence boosting output.

Policies like Operation Twist may have more ambiguous effects. When financial mar-
kets are highly disrupted, bond markets become much more segmented. Targeted buying
and selling of securities throughout the term structure will have highly localized effects.
Depending on which maturities are the most important for household borrowing, this could
end up having the opposite of the intended effect, leading to falling consumption.

5.4 Can LSAPs Be Stabilizing? Endogenous QE Rules and Determinacy

The results above show that, under the right financial conditions, QE can move output and
inflation. A separate question is: can the central bank use QE to achieve determinacy and
stabilize the economy?

Suppose that the central bank conducts QE operations in a similar manner to how it
sets the policy rate. I study this by modifying the idiosyncratic demand factor from eq.
(19) so that it endogenously reacts to inflation:

dβt = −κβ
(
βt − φβππt

)
dt . (33)

To simplify, I assume this is the only demand factor. Further, I assume that the central bank
does not react to the output gap (φx = 0). This will imply that the model moves towards
the region of indeterminacy for intermediate to high levels financial frictions. However, by
choosing φβπ > 0, it is possible to re-establish determinacy.

Figure 13 shows how the determinacy condition varies with different levels of risk aver-
sion (a) and QE responsiveness to inflation (φβπ). When risk aversion is very low, the model
is determinate for all values of φβπ. Moreover, changes in the responsiveness to either infla-
tion or output have no effect on the determinacy condition (the value of the unstable eigen-
values). As risk aversion increases, the baseline model with no endogenous QE responses
quickly moves towards the region of indeterminacy. But allowing for a stabilizing QE pol-
icy that reacts to inflation (φβπ > 0) moves the model back towards the region of determi-
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Figure 13: Regions of Determinacy
Notes: the heatmaps show the region of determinacy (lighter regions, upper left) and indetermi-
nacy (darker regions, lower right). The x-axis is the level of risk aversion a, and the y-axis is the
level of the parameter φβπ, which governs how strongly QE reacts to inflation. The values corre-
spond to the smallest unstable (real) eigenvalue; the model is determinate when this is negative.
The dotted black line delineates the region of indeterminacy from determinacy.
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nacy. For strong enough responses of QE to inflation, the model regains determinacy.
Intuitively, an endogenous QE rule works by picking up the slack left by conventional

policy. When financial markets are healthy, a standard Taylor rule is stabilizing. As
financial frictions increase, the pass-through of conventional policy deteriorates. If this is
the only policy rule, then eventually the model becomes unstable. However, as seen above,
QE becomes more effective as financial frictions increase. Hence, just as conventional policy
is failing, the endogenous QE rule becomes more and more effective.

5.5 Optimal Policy

A full treatment of a planner’s optimal policy problem is beyond the scope of this paper.
Allowing for the central bank to choose a path of the policy rate that differs from the
Taylor-type rules considered in this paper will in general lead to bond prices that are not
affine functions of the state variables. Instead, I consider a simpler optimal policy problem.
This section analyzes how the central bank would choose to set the response to inflation
φπ and the inertia term κr optimally, as a function of financial market health (and further
simplifies the problem by assuming no response to output: φx = 0). I assume a quadratic
loss function for the planner, given by

min
φπ ,κr

E0

∫ ∞
0

e−ρt
(
wππ

2
t + wxx

2
t

)
dt

where wπ ≥ 0 and wx ≥ 0 are the weights that the planner assigns to inflation and output,
respectively. Appendix C.4 derives the general expression for this present discounted value
of future second moments of the jump variables in this class of models.

Figure 14 plots the optimal coefficients φπ (Panel A) and κr (Panel B) as a function of
risk aversion. I suppose that the planner cares more about inflation relative to output by
setting the planner weights as wπ = 1, wx = 0.02.8

The optimal response to inflation is increasing (higher φπ) as arbitrageur risk aversion
increases (higher a). Further, optimal inertia is also increasing (lower κr). Since monetary
policy relies on the pass-through provided by financial markets, as the risk-bearing capac-
ity of arbitrageurs becomes disrupted, monetary policy efficacy is weakened. Moreover, as
financial market disruptions increase, the economy becomes less stable and the output and
inflation responses to these shocks increase. In order to effectively stabilize the economy
(minimize the volatility of inflation and output), the optimal response becomes more agres-
sive and longer-lasting.

8Note that in a full optimal policy experiment, the quadratic loss function is an approximation to the
welfare loss function, and the planner weights would be derived from this welfare function.
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Figure 14: Optimal Response to Shocks
Notes: optimal policy coefficients as risk aversion increases. The planner weights are set to
wπ = 1, wx = 0.02. Panel A plots the optimal Taylor rule coefficient on inflation (φπ), while
Panel B plots the optimal inertia term (κr). The response Taylor rule coefficient on output (φx)
is set to 0. The dotted black line corresponds to the estimated value of risk aversion.

6 Concluding Remarks

This paper studies conventional and unconventional monetary policy through the lens of
a general equilibrium “preferred habitat” New Keynesian model. When output depends
on both short- and long-term borrowing rates, the transmission of monetary policy to the
macroeconomy depends on imperfect financial markets. As a result, standard monetary
policy becomes less effective when financial markets are disrupted. For the same reason,
the efficacy of forward guidance is weakened. However, financial crises open the door to
other unconventional policies such as quantitive easing, which can push down long-term
rates and stabilize output and inflation.

The framework considered in this paper suggests promising avenues for future work.
The results relating financial health and the determinacy of the model are important for
understanding how policymakers can achieve macroeconomic stability. The model suggests
revisiting the empirical work studying the stability properties of central bank policy rules,
as the requirements for stability are state-dependent. Furthermore, the findings provide a
possible justification for macro-prudential policies. The model assumes that risk aversion
is fixed, but in reality the risk-bearing capacity of financial markets is endogenous. When
this capacity is too low, the result is macroeconomic instability. If investors in financial
markets do not internalize this, then there is an externality that can be addressed by
policy. Extending the model to allow for endogenous risk-bearing capacity is useful for
understanding how such macro-prudential policies should be carried out.

The model can also be extended to allow for a more realistic treatment of household
borrowing. For example, the model does not allow for default risk, but in reality the key
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borrowing rates for households will not be default-free. Moreover, a major part of some
QE programs was targeting mortgage-backed securities. The localization results suggest
that during financial disruptions, LSAP programs will be most effective when they target
borrowing markets in which households are most active. But the sensitivity of real activity
to different borrowing rates, and the stability of this relationship over time, is an open
empirical question.

This paper shows that LSAPs should be a tool in central bankers’ arsenal to stabilize
the economy during financial crises. However, the predictions of the model are not only
dependent on the health of financial markets but also sensitive to interactions with the
location of the purchases in maturity space, how long the purchases last, how sensitive the
real economy is to long-term rates, and the structure of the other fundamental shocks in
the economy. Policymakers are likely to face a great deal of uncertainty about these factors,
which raises the possibility that a better approach may be to target specific long-term rates
and allow for flexibility in the open-market operations used to achieve these targets. More
generally, the model should serve as the basis for more quantitative analysis in order to
design optimal policies.
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Appendix A Proofs

Proof of Lemma 1. The results follow from analyzing the characteristic polynomial of
Υ:

c(λ) = λ2 − κrλ− ς−1κrφxÂr

1. Note that c(λ) is increasing iff λ > 1
2κr. Additionally, c(λ) → ∞ whenever λ → ±∞.

Note

c(0) = c(κr) = −ς−1κrφxÂr

Hence if Âr > 0, the expression above is negative which implies c(λ) has two roots:
λ1 > κr and λ2 < 0.

2. Setting c(λ) to zero and solving for Âr gives eq. (11). Note that h(λ) is a positive
quadratic with zeros at λ = 0 and λ = κr; for λ ∈ (0, κr), h(λ) is negative.

3. The eigenvector associated with λ1 is

q1 ≡

[
− λ1
ς−1Âr

1

]

In this case Ω, the matrix governing the equilibrium dynamics of the jump variables in
eq. (10), is simplify a scalar, given by ωx ≡ q21

q11
. Substituting the solution for Âr gives

the result.

Proof of Lemma 2. This result is the scalar counterpart of the optimality conditions
derived in Prop. 7. The expected instantaneous return simplifies to

µt,τ = A′r(τ)rt + C ′(τ) + λ(rt − rSS)Ar(τ) +
1

2
σ2
rAr(τ)2 (A1)

Proof of Lemma 3. The functional forms of Ar(τ), C(τ), and ν are again the scalar
analogues of the results in Prop. 7. In this case, M ≡ ν and simplifies to eq. (16) so C(τ)

simplifies to

C(τ) = n1(τ)ZC −
1

2
σ2
rn2(τ) (A2)
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where

ZC =
aσ2

rN2 + λrSS

1 + aσ2
rN1

n1(τ) =

∫ τ

0
Ar(u) du

n2(τ) =

∫ τ

0
Ar(u)2 du

N1 =

∫ T

0
α(τ)Ar(τ)n1(τ) dτ

N2 =

∫ T

0
α(τ)Ar(τ)

(
β̄(τ)τ +

1

2
σ2
rn2(τ)

)
dτ

If a = 0 it immediately follows that ν = λ, so throughout assume that a > 0. In this
case, solving for ν is a fixed point problem. Since α(τ) > 0 ∀τ , this implies

aσ2
r

∫ T

0
α(τ)τ2f(ντ)2 dτ > 0

Hence, the right-hand-side of eq. (16) is strictly greater than λ.
Next, note

∂f(ντ)2

∂ν
= 2τf(ντ)f ′(ντ)

f(·) is a strictly decreasing, convex function, approaching 0 as x → ∞. So the above
expression is negative. This implies the right-hand-side of eq. (16) is strictly decreasing in
ν. Further, as ν →∞, if τ > 0 then f(ντ)→ 0. Thus∫ T

0
α(τ)τ2f(ντ)2 dτ → 0

which implies the right-hand-side of eq. (16) approaches λ as ν →∞.
Hence there exists a unique ν ∈ (λ,∞) such that eq. (16) is satisfied. Treating ν as a

function of λ, I derive some additional properties. Recall ν(λ) > λ. Further,

∂f(ντ)2

∂λ
= 2τf(ντ)f ′(ντ)

∂ν

∂λ

=⇒ ∂ν

∂λ
=

(
1− 2aσ2

r

∫ T

0
α(τ)τ3f(ντ)f ′(ντ) dτ

)−1

Also note α(τ)τ3f(ντ) ≥ 0 and f ′(ντ) ≤ 0, so

0 <
∂ν

∂λ
< 1
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Fixing λ, note that

∂ν

∂a
=

σ2
r

∫ T
0 α(τ)τ2f(ντ)2 dτ

1− 2aσ2
r

∫ T
0 α(τ)τ3f(ντ)f ′(ντ) dτ

Hence ν is increasing in a.
Finally, Âr is given by

Âr ≡
∫ T

0

η(τ)

τ
Ar(τ) dτ

eq. (17) is obtained by substituting eq. (15). If η(τ) is the Dirac delta function, then
g(λ) = 1 ∀λ. Otherwise,

g′(λ) =

∫ T

0
η(τ)τf ′(ντ) dτ

∂ν

∂λ

hence g′(λ) < 0 and additionally g(λ)→ 0 as λ→∞.

Proof of Prop. 1. In general equilibrium, λ1 and Âr are determined by the intersection
of eqs. (17) and (11). Recall from the proof of Lemma 3, for λ > 0, g(λ) is strictly positive,
decreasing, and approaches 0 as λ → ∞. From the proof of Lemma 1, h(λ) is negative
for 0 < λ < κr, but is strictly increasing and grows without bound when λ ≥ κr. Hence
there exists a unique λ1 > κr > 0 such that g(λ1) = h(λ1). Figure 2 plots examples of the
intersection of g and h.

Given any value of r∗, the steady state is

rSS =
r̄ − Ĉ
Âr

xSS =
r∗ − rSS

φx

Proof of Corollary 1.1. Recall from Prop. 1 that Âr (and the associated eigenvalue
λ1) are determined by the intersection of a downward sloping curve g(λ) and an upward
sloping (in the neighborhood of the intersection λ1) curve h(λ). And while these curves
depend on the parameters of the model, the parameter dependence is disjoint: g(·) only
depends on the parameters governing the term structure side of the model, while h(·)
depends on the macro parameters. This greatly simplifies studying comparative statics.
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1. The proof of Lemma 3 showed that ν is increasing in a. Then

∂g(λ)

∂a
=

∫ T

0
η(τ)f ′(ντ) dτ

∂ν

∂a

which implies that for any given λ, an increase in a leads to a downward shift in g(λ).
Since h(λ) is unchanged, this implies that the point of intersection shifts downward and
to the left.

Further, note that as a → ∞, ν → ∞. To see why, suppose instead that ν → ν∗ < ∞.
Then f(ντ)→ f(ν∗τ) > 0. But then

aσ2
r

∫ T

0
α(τ)τ2f(ντ)2 dτ →∞

and therefore the right-hand side eq. (16) grows without bound, a contradiction. This
immediately implies that f(ντ)→ 0 and therefore so too does g(λ) for λ > 0. As before,
this says that the point of intersection of g and h continues shifting downward and to
the left until Âr = 0 and λ1 = κr.

Note that if a = 0, g(λ) is independent of changes in σr. But when a 6= 0, the same
arguments above show that

∂Âr
∂σr

< 0,
∂λ1

∂σr
< 0

lim
σr→∞

Âr = 0, lim
σr→∞

λ1 = κr

2. Differentiating eq. (11) with respect to κr gives

− λ2

ς−1κ2
rφx

< 0 ∀λ

Hence the intersection shifts down and to the right.

3. Differentiating eq. (11) with respect to φx gives

−λ(λ− κr)
ς−1κrφ2

x

which is negative whenever λ > κr. Hence the intersection shifts down and to the right.

4. Note for arbitrary functions f and g, where f and g satisfy the following:

f(x) > 0, f ′(x) < 0

g(x) > 0 ⇐⇒ x < x∗,

∫
g(x) dx = 0
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Then
∫
f(x)g(x) dx > 0. So set f(ντ) as f , and ηs(τ)− η`(τ) as g, which gives∫ T

0
(ντ)ηs(τ) dτ >

∫ T

0
(ντ)η`(τ) dτ

which says that gs(λ) > g`(λ) (using the notation from a previous Lemma). In other
words, g shifts down moving from the ηs weights to the η` weights. Since h is unchanged,
the equilibrium results follow.

Proof of Corollary 1.2. The expression for the optimal target eq. (18) follows from
the steady state results derived in the proof of Prop. 1.

Next, consider demand functions β̄h(τ) ≥ β̄h(τ). Letting superscripts h and ` denote
the equilibrium outcomes under β̄h(τ) and β̄`(τ), note that the coefficient function Ahr (τ) =

A`r(τ), so the only difference comes about due to changes in the constant function. Then
note that

Ĉh − Ĉ` = −Âr(r∗h − r∗`)

=⇒ r∗h − r∗` = − aσ2
r n̂1(Nh

2 −N `
2)

λn̂1 + Âr(1 + aσ2
rN1)

where the second line follows from eq. (A2), and the expressions defined in the proof of
Lemma 3. Then, since β̄h(τ) ≥ β̄`(τ),

Nh
2 −N `

2 =

∫ T

0
α(τ)τAr(τ)

(
β̄h(τ)− β̄`(τ)

)
dτ > 0

=⇒ rh∗ ≤ r`∗

where the inequalities are strict whenever a > 0.

Proof of Prop. 2. To solve for x0, for t ≤ t� the dynamics of the policy rate under the
peg imply that

E0rt = r� + e−κ
�
rt(r0 − r�)

=⇒ E0rt� = r�

In order to satisfy transversality conditions, once the central bank returns to a Taylor rule,
the output gap must satisfy xt� = ωx(rt� − rSS). Thus,

E0xt� = ωx(r� − rSS)
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Solving for E0xt� given x0 gives

E0xt� = x0 + t�ς−1(Â�rr
� + Ĉ� − r̄)

Hence,

∂x0

∂r�
= ωx − t�ς−1Â�r

∂2x0

∂r�∂t�
= −ς−1Â�r

Then the result follows since

∂Â�r
∂a

< 0,

∣∣∣∣∂ωx∂a
∣∣∣∣ < 0

Proof of Lemma 4. Following the same steps as in Lemma 1:

Âr =
λ1(λ1 − κr)
ς−1κrφx

Substituting this into Υ, the eigenvalue decomposition is

Λ =

λ1 0 0

0 κβ 0

0 0 −λ1 + κr



Q =


κrφx
−λ1+κr

κrφx
κr−κβ

κrφx
λ1

0
κ2β−κβκr−λ

2
1+λ1κr

(κr−κβ)ς−1Âβ
0

1 1 1


Solving for the rational expectations equilibrium gives

Γ =

[
λ1

κrφxς−1Âβ
λ1−κr+κβ

0 κβ

]
Ω =

[
−λ1+κr
κrφx

−ς−1Âβ
λ1−κr+κβ

]

Proof of Lemma 5. This follows from the general case in Prop. 7, where

Γ =

[
γ1 γ12

0 γ2

]
, Σ =

[
σ2
r 0

0 0

]
=⇒ M =

[
ν 0

ν12 γ2

]
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and the elements of M are given by

ν = γ1 + aσ2
r

∫ T

0
α(τ)Ar(τ)2 dτ

ν12 = γ12 + aσ2
r

∫ T

0
α(τ) [Aβ(τ)− τθ(τ)]Ar(τ) dτ

The eigenvector decomposition gives

D =

[
ν 0

0 γ2

]
, G =

[
1 0
ν12
ν−γ2

ν12
γ2−ν

]

and thus

A(τ) = GD−1 [I− exp(−Dτ)] 1

=⇒ Ar(τ) = τf(ντ)

Aβ(τ) =
ν12

ν − γ2
τ(f(ντ)− f(γ2τ))

Hence, rewriting the expression for ν gives

ν = γ1 + aσ2
r

∫ T

0
α(τ)τ2f(ντ)2 dτ

which is equivalent to eq. (16).
Substituting the solution for Aβ(τ) into the expression for ν12 and solving gives

ν12 =
γ12 − aσ2

r

∫ T
0 α(τ)τ2f(ντ)θ(τ)

1− aσ2
r

ν−γ2

∫ T
0 α(τ)τ2(f(ντ)− f(γ2τ)) dτ

(A3)

Thus, integrating and weighting by η(τ)
τ gives

Âr =

∫ T

0
η(τ)f(ντ) dτ

Âβ =
ν12

ν − γ2

∫ T

0
η(τ)(f(ντ)− f(γ2τ)) dτ

and hence, since the fixed point problem that solves ν is equivalent to the baseline rigid
price model, so is the expression for Âr.
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Proof of Prop. 3. 1. Combining the coefficients used in Lemmas 4 and 5:

γ1 = λ1

γ2 = κβ

γ12 =
κrφxς

−1Âβ
λ1 − κr + κβ

=
κrφxς

−1

λ1 − κr + κβ

(
ν12

ν − γ2

∫ T

0
η(τ)(f(ντ)− f(γ2τ)) dτ

)
Substituting these expressions into eq. (A3) and rearranging gives

ν12 =
−aσ2

rN1

1− φxκrς−1

(λ1−κr+κβ)(ν−κβ)N2 − aσ2
r

ν−κβN3

(A4)

where N1, N2, N3 are integral expressions:

N1 =

∫ T

0
α(τ)τ2f(ντ)θ(τ) dτ

N2 =

∫ T

0
η(τ)(f(ντ)− f(κβτ)) dτ

N3 =

∫ T

0
α(τ)τ2(f(ντ)− f(κβτ)) dτ

First, focusing on the denominator of eq. (A4),

ν > κβ ⇐⇒ f(ντ) < f(κβτ)

hence the denominator is strictly positive. Then, since by assumption θ(τ) ≥ 0, the
numerator of eq. (A4) is negative (strictly if a > 0). Therefore, ν12 ≤ 0 and Âβ ≥ 0

(with strict inequalities when a > 0).

2. Taking the limit as κβ →∞, from eq. (A4) the limiting value of ν12 is

ν12 → −aσ2
r

∫ T

0
α(τ)τ2f(ντ)θ(τ)

Since ν is independent of κβ , this limit is bounded. Further, f(κβτ)→ 0 as well. Hence,
taking the limit of eq. (22) gives

ν12

ν − κβ

∫ T

0
η(τ)(f(ντ)− f(κβτ)) dτ → 0
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Proof of Lemma 6. 1. The characteristic polynomial of Υ is

c(λ) ≡ λ3 − (κr − ρ)λ2 − ς−1(Ârκrφx + δ + κrρς)λ− ς−1κr(Âr(δφπ + ρφx)− δ)

Hence:

lim
λ→+∞

c(λ) = +∞

lim
λ→−∞

c(λ) = −∞

c(κr) = −ς−1κrÂr(κrφx + δφπ + ρφx) < 0

Hence there is some (real) λ1 > κr > 0 such that c(λ1) = 0. For the other two roots, note

c′(λ) = 3λ2 − 2(κr − ρ)λ− ς−1(Ârκrφx + δ + κrρς)

c(0) = −ς−1κr(Âr(δφπ + ρφx)− δ)

c′(0) = −ς−1(Ârκrφx + δ + κrρς)

So c′(0) < 0. If c(0) > 0, since c(κr) < 0 there will be another value λ2 ∈ (0, κr) such that
c(λ2) = 0. Hence c(0) < 0 is necessary for determinacy. This is satisfied iff eq. (24) holds.

To see that this condition is sufficient, since c′(0) < 0, c(λ) has a local maximum for
some λ < 0, denoted c(z) = y. If y > 0 then there are two real negative zeros, one less
than z and one greater than z. If y = 0 then there are two duplicated real negative zeros
(equal to z). Finally, if y < 0 then there are two conjugate complex zeros. The line that
intersects (λ1, 0) and is tangent to c(λ) is upward sloping, and is tangent to c(λ) at a
point (M,H) where M < z. The real components of the complex zeros is given by M .

2. Setting c(λ) to zero and solving for Âr gives eq. (25). The fact that h(λ)→∞ as λ→∞
follows for the sign restrictions on the parameters.

Note that the zeros of h(λ) are{
κr,

1

2

(
−ρ±

√
ρ2 + 4δς−1

)}
so there are two positive (real) zeros, and one negative (real) zero. Order these z1 >

z2 > 0 > z3. Then z2 + z3 ≤ −ρ < 0 (equality holds if z1 = κr). Write

h(λ) =
(λ− z1)(λ− z2)(λ− z3)

ς−1κr (δφπ + ρφx + λφx)

Differentiating with respect to λ gives

h′(λ) = h(λ)

[
1

λ− z1
+

1

λ− z2
+

1

λ− z3
+

−φx
δφπ + ρφx + λφx

]
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If λ ∈ [0, z2), then h(λ) > 0 while the first and fourth terms in brackets are negative.
Then

1

λ− z2
+

1

λ− z3
=

2λ− (z2 + z3)

(λ− z2)(λ− z3)
< 0

since z3 < 0 < λ < z2 by assumption, and z2 + z3 < 0. Hence for λ ∈ [0, z2), h′(λ) < 0

and hence h(0) is the maximum in this range.

Finally, h(λ) > 0 whenever λ > z1. The second and third in brackets are positive, while

1

λ− z1
− φx
δφπ + ρφx + λφx

=
δφπ + ρφx + z1φx

(λ− z1)(δφπ + ρφx + λφx)
> 0

hence for λ > z1, h(λ) is a positive strictly increasing function.

Also, note that the condition for determinacy is equivalent to

Âr > h(0)

3. Substituting the expression for Âr into Υ and carrying out the eigenvalue decomposition
and solving for Ω gives the result

Proof of Prop. 4. 1. In general equilibrium, Âr is determined by the intersection of
eqs. (17) and (25). Recall that for λ ≥ z1 where z1 is the largest root of h, h is strictly
increasing and grows without bound. Further, g is a positive, strictly decreasing function
approaching 0. Hence there exists a unique λ1 ≥ z1 such that

Âr = g(λ1) = h(λ1)

2. For uniqueness, since g is defined for positive values only I show that there is no other
λ′ ∈ [0, z1] such that g(λ′) = h(λ′). From Lemma 6, h(0) > h(λ′) in this range.
Additionally, Lemma 3 says that g(λ) is decreasing, so that g(λ1) > g(λ′). If the model is
determinate, then the condition from Lemma 6 gives g(λ1) > h(0). So g(λ′) > h(λ′) for
all λ′ ∈ [0, z1]. Hence Âr is unique. Figure 5 plots examples of intersections of g and h.

Proof of Corollary 4.1. The proofs are similar to Cor. 1.1.

Proof of Corollary 4.2. Since δ > 0, the right hand side of the inequality from eq.
(24) is strictly greater than zero. Then since Âr → 0 as a→∞, there is some a for which
a > a implies

Âr <
δ

δφπ + ρφx
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Proof of Prop. 5. When the determinacy condition eq. (24) is satisfied, the proof is the
same as in Prop. 2. The result follows since

∂Â�r
∂a

< 0,

∣∣∣∣∂ωπ∂a
∣∣∣∣ < 0,

∣∣∣∣∂ωx∂a
∣∣∣∣ < 0

Proof of Lemma 7. The proof is the same as Lemma 4, except that the rational expec-
tations equilibrium matrices are now more complicated. The rational expectations dynam-
ics matrices are given by

Γ =

[
λ1 γ12

0 κβ

]
(A5)

Ω =

[
δ(−λ1+κr)

κr(φπδ+φx(λ1+ρ) ω2,1

(λ1+ρ)(−λ1+κr)
κr(φπδ+φx(λ1+ρ) ω2,2

]
(A6)

where γ12, ω2,1 and ω2,2 are rational functions of the eigenvalue λ1.

Proof of Prop. 6. Given the determinacy condition is satisfied, the the proof is similar
to Prop. 3.

Proof of Prop. 7. Given the affine functional form assumption, I use Ito’s Lemma to
compute instantaneous returns. Write Pt,τ explicitly as a function of time t and variables yt:

P (t,y) = exp
{
−yTA(τ(t))− C(τ(t))

}
Note that the dependence on the first argument t comes through τ in the coefficient functions
A(τ) and C(τ). Of course dτ

dt = −1, which implies

∂P

∂t
= Pt,τ

(
yTt A′(τ) + C ′(τ)

)
The gradient and Hessian with respect to y are

∇yP = −Pt,τA(τ)

HyP = Pt,τ
(
A(τ)A(τ)T

)

67



Therefore, Ito’s Lemma implies the instantaneous return is

dPt,τ
Pt,τ

= µt,τ dt−A(τ)TS dBt (A7)

µt,τ = yTt A′(τ) + C ′(τ) + [Γ(yt − y)]T A(τ) +
1

2
Tr
[
ΣA(τ)A(τ)T

]
(A8)

The arbitrageur’s optimality conditions are given by:

∂Et dWt

∂bt,τ
=
a

2

∂V art dWt

∂bt,τ

Use eq. (A7) to compute the expectation and variance of the change in arbitrageur wealth:

Et dWt =

[(
Wt −

∫ T

0
bt,τ dτ

)
rt +

∫ T

0
bt,τµt,τ dτ

]
dt

=⇒ ∂Et dWt

∂bt,τ
= (µt,τ − rt) dt

and the variance is

V art dWt =

(∫ T

0
bt,τA(τ)T dτ

)
Σ

(∫ T

0
bt,τA(τ) dτ

)
dt

=⇒ ∂V art dWt

∂bt,τ
= 2

(∫ T

0
bt,τA(τ)T dτ

)
ΣA(τ) dt

Note that

bt,τ = −b̃t,τ = α(τ)
[
yTt (Θ(τ)τ −A(τ)) + β̄(τ)τ − C(τ)

]
(A9)

Substitute eq. (A9) into the optimality conditions derived above. Equating the coefficients
on yt terms (and assuming that rt is ordered first) gives:

A′(τ) + MA(τ)− e1 = 0

where M is defined by eq. (30). Note that since M is itself a function of integral terms
involving A(τ) this is a fixed point problem with no simple solution. However, treating M

as fixed, with initial conditions A(τ) = 0 the general solution is given by eq. (31).
Suppose M is diagonalizable, with M = GDG−1. Normalize G such that G1 = e1

(that is, its first row sum is 1, and all other rows sum to 0). Then∫ τ

0
exp(−Ms) ds e1 = G

∫ τ

0
exp(−Ds) ds G−1e1

= G

∫ τ

0
exp(−Ds) ds 1
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and if M is invertible then eq. (31) is obtained.
Again substitute eq. (A9) into the optimality conditions. Equating constant coefficients

gives:

C ′(τ)− (Γy)TA(τ) +
1

2
Tr
[
ΣA(τ)A(τ)T

]
= aA(τ)TΣ

∫ T

0
α(τ)

(
τ β̄(τ)− C(τ)

)
A(τ) dτ

Define the vector

ZC ≡ aΣ
∫ T

0
α(τ)A(τ)

[
τ β̄(τ)− C(τ)

]
dτ + Γy (A10)

Imposing the initial condition C(0) = 0 and integrating, the solution for C(τ) given by

C(τ) = n1(τ)TZC −
1

2
Tr [Σn2(τ)] (A11)

n1(τ) =

∫ τ

0
A(u) du (A12)

n2(τ) =

∫ τ

0
A(u)A(u)T du (A13)

Substitute C(τ) from (A11) into (A10) and solve for ZC :

ZC = [I + aΣN1]−1 [aΣN2 + Γy] (A14)

where I is the identity matrix and

N1 =

∫ T

0
α(τ)A(τ)n1(τ)T dτ (A15)

N2 =

∫ T

0
α(τ)A(τ)

(
β̄(τ)τ +

1

2
Tr [Σn2(τ)]

)
dτ (A16)

Appendix B Numerical Solution Algorithm

This section describes the numerical solution method used to solve the generalized model.
This also requires obtaining closed-form solutions to a number of integral expressions.

69



B.1 Closed-Form Integral Expressions

Define the (scalar) functions:

φ0(ν, τ) ≡
∫ τ

0
uf(νu) du

=
τ

ν
(1− f(ντ))

φ1(ν, τ) ≡
∫ τ

0
u2f(νu) du

=
τ

ν2

(
exp(−ντ)− f(ντ) +

1

2
ντ

)
φ2(νi, νj , τ) ≡

∫ τ

0
u2f(νiu)f(νju) du

=
τ

νiνj
(1− f(νiτ)− f(νjτ) + f((νi + νj)τ))

For any function F (τ), define

F̃ ≡
∫ T

0
η(τ)F (τ) dτ , F̂ ≡

∫ T

0

η(τ)

τ
F (τ) dτ

In particular, define

f̃(ν) ≡
∫ T

0
η(τ)f(ντ) dτ

Recall
∫ T

0 η(τ) dτ ≡ 1. Therefore,

φ̂0(ν, τ) =
1

ν
(1− f̃(ν))

φ̂2(νi, νj , τ) =
1

νiνj
(1− f̃(νi)− f̃(νj) + f̃(νi + νj))

For the integral terms involving α(τ), define

φα0 (ν, τ) ≡
∫ τ

0
α(u)uf(νu) du

φα1 (ν, τ) ≡
∫ τ

0
α(u)u2f(νu) du

φα2 (νi, νj , τ) ≡
∫ τ

0
α(u)u2f(νiu)f(νju) du

For the integral terms involving θk(τ), define

φα,θk1 (ν, τ) ≡
∫ τ

0
α(u)u2θk(u)f(νu) du
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Since η(τ) is proportional to the pdf of a truncated Gamma distribution, this term can
be written as

f̃(ν) =

(∫ T

0
τ exp(−η1τ) dτ

)−1
(ν exp(η1T )− η1 − ν + exp(−νT )η1) exp(−η1T )

(νη1(η1 + ν))

Further, I consider a more general form of α(τ), given as follows:

α(τ) = α0e
−α1τ

In the estimation, I simplify by setting α1 = 0 and α0 = 1.
Note that this implies

α(u)f(νu) =
α0

ν
[(α1 + ν)f((α1 + ν)u)− α1f(α1u)]

Therefore the integral expressions become

φα0 (ν, τ) =
α0

ν
[(α1 + ν)φ0(α1 + ν, τ)− α1φ0(α1, τ)]

φα1 (ν, τ) =
α0

ν
[(α1 + ν)φ1(α1 + ν, τ)− α1φ1(α1, τ)]

φα2 (νi, νj , τ) =
α0

νi
[(α1 + νi)φ2(α1 + νi, νj , τ)− α1φ2(α1, νj , τ)]

For θk(τ), I assume
θk(τ) = δ(Tk − τ)

where Tk ∈ [0, T ], and where δ is the Dirac delta function. Therefore, when τ > Tk,

φα,θk1 (ν, τ) = α(Tk)T
2
k f(νTk)

Also, note that τ2f(ντ)→ 0 as τ → 0. Hence if Tk = 0, φα,θk1 (ν, τ) = 0.
Next, extend these scalar functions to their multi-dimensional components.

F(x) = x−1
(
I− e−x

)
1

This implies the coefficient function can be written

A(τ) = GτF(Dτ)

where
[F(Dτ)]i = f(νiτ)

since D = diag [ν1, . . . , νJ ].
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Φ0(T ) =

∫ T

0
τF(Dτ) dτ

Φ1(T ) =

∫ T

0
τ2F(Dτ) dτ

Φ2(T ) =

∫ T

0
τ2F(Dτ)F(Dτ)T dτ

For integral terms involving the function α(τ), define

Φα
1 (T ) =

∫ T

0
α(τ)τ2F(Dτ) dτ

Φα
2 (T ) =

∫ T

0
α(τ)τ2F(Dτ)F(Dτ)T dτ

For integral terms involving the function Θ(τ), define

Φα,θ
1 (T ) =

∫ T

0
α(τ)τ2Θ(τ)F(Dτ)T dτ

For integral terms involving the function η(τ), define

F̃ =

∫ T

0
η(τ)F(Dτ) dτ

Φ̂0 =

∫ T

0

η(τ)

τ
Φ0(τ) dτ

Φ̂2 =

∫ T

0

η(τ)

τ
Φ2(τ) dτ

Therefore, all the vector functions can be written as

n1(τ) = GΦ0(τ)

n2(τ) = GΦ2(τ)GT

M = ΓT − a
[
Φα,θ

1 −GΦα
2

]
GTΣ

N1 = G [Φα
1 1−Φα

2 ] D−1GT

N2 = G

[
Φα,β

1 +
1

2
Φα

3 vec
[
GTΣG

]]
Â = GF̃

n̂1 = GΦ̂0

n̂2 = GΦ̂2G
T
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I compute these integral vectors and matrices element by element, using the scalar
functions above.

[Φ0]i = φ0(νi, T )

[Φ1]i = φ1(νi, T )

[Φ2]i,j = φ2(νi, νj , T )

For α(τ) integrals:

[Φα
1 ]i = φα1 (νi, T )

[Φα
2 ]i,j = φα2 (νi, νj , T )

For η(τ) integrals: [
F̃
]
i

= f̃(νi)[
Φ̂0

]
i

= φ̂0(νi, T )

For θk(τ) integrals: [
Φα,θ

1

]
k,i

= φα,θk1 (νi, τ)

B.2 Equilibrium Algorithm

This section describes a solution method for solving the fixed point problem described in
Prop. 7. Define the function

F (M) = Γ(Â)T − a
[∫ T

0
α(τ) (τΘ(τ)−A(τ)) A(τ)T dτ

]
Σ−M

Equilibrium is defined as a root of this function: F (M) = 0.
The following algorithm is used to compute F . Given some initial value of the matrix M:

1. Solve the eigen-decomposition to get D, G, which gives the implied A(τ) and Â.

2. Construct the implied dynamics matrix Υ(Â) and solve for the rational expectations
equilibrium matrix Γ(Â) (assuming stability conditions are met).

3. Using the integral expressions derived above, solve for F (M).

Using the above algorithm, standard root-finding algorithms can be used to solve for the
equilibrium (note that while D and G may contain complex values, M and F will always
be real-valued).

For the dynamics matrix functions Υ(Â) considered in Section 5, when a = 0 the
equilibrium is unique. However, for generic dynamics matrix functions Υ(Â) and when
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a > 0, multiple equilibria are possible. In order to rule out pathological equilbiria, I focus
on the equilibrium which approaches the a = 0 equilibrium as a→ 0.

Appendix C Microfoundations

This section describes the model from first principles. Time is continuous. The model
consists of households, firms, arbitrageurs, and a government. The government conducts
monetary policy (changes in policy rate), passive fiscal policy (changes in taxes, which play
no role), and QE (changes in holdings of long-term bonds).

Households face radically incomplete markets: they can only borrow through a passive
mutual fund offering an instantaneous return which is a weighted average of all yields.
Infinitesimally-lived arbitrageurs are the marginal investors in financial markets.

The short rate is the main policy tool, and as in Woodford (2003) I consider a “cashless
limit” economy.

C.1 Households and Firms

An infinitely-lived representative household seeks to maximize expected utility by choosing
consumption, labor, and savings. The household problem is standard, except they are
restricted to borrowing at an effective rate r̃t. The household problem is

max
{Ct,Nt}

E0

∫ ∞
0

e−ρt

(
C1−ς
t

1− ς
− N1+ξ

t

1 + ξ

)
dt (C1)

s.t. dWH
t ≤

(
r̃tW

H
t − PtCt + wtNt − THt

)
dt (C2)

lim
T→∞

Et[Q
H
t,TW

H
T ] = 0 (C3)

eq. (C2) is the household’s flow budget constraint; eq. (C3) is a transversality condition.
The parameter ς is the coefficient of relative risk aversion; ξ is the labor supply elasticity;
ρ is the discount rate. WH

t is household nominal wealth; Ct is consumption of composite
good; Nt is labor; wt is nominal wage; THt is the net taxes and transfers to households.

QHt,T is the household’s discount factor, given by

QHt,T = exp

[
−
∫ T

t
(r̃s − πs) ds

]
(C4)

Note that markets are not complete (and so eq. (C4) is not the relevant discount factor
for pricing securities), but eqs. (C2) and (C3) can be replaced with an equivalent single
intertemporal budget constraint

WH
0 = E0

∫ ∞
0

QH0,t
(
PtCt − wtNt + THt

)
dt (C5)
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where WH
0 is given.

Then the intra-temporal optimality condition determining labor supply is

CςtN
ξ
t =

wt
Pt

(C6)

and linearized intertemporal optimality conditions give

dct = ς−1 (r̃t − πt − ρ) dt (C7)

Firms face Rotemberg (1982) pricing adjustment costs, and their problem is unchanged
relative to benchmark New Keynesian models.

C.2 Arbitrageurs and Preferred Habitat Investors

Arbitrageurs face a mean-variance trade-off in their wealth:

max
bt,τ

Et dWA
t −

a

2
V art dWA

t

subject to their flow budget constraint

dWA
t =

(
WA
t − TAt −MA

t −
∫ T

0
bt,τ dτ

)
rt dt+

∫ T

0
bt,τ

dPt,τ
Pt,τ

dτ

+MA
t r

M
t dt (C8)

This is the same as the one considered in the main text, with the exception that arbitrageurs
can also hold monetary balances MA

t (with a return rmt , which must satisfy rt ≥ rmt with
equality if money supply is non-zero), and they face taxes/transfers TAt .

The “preferred habitat” investors are aggregated into a single passive mutual fund, which
offers households the effective borrowing rate, and invests the rest of its wealth in long-term
bonds. The flow budget constraint is thus

dWF
t = −WH

t r̃t dt+

∫ T

0
b̃t,τ

dPt,τ
Pt,τ

dτ +

(
WF
t −WH

t − TGt −
∫ T

0
b̃t,τ dτ

)
rt dt (C9)

and also face taxes/transfers.
The demand for bonds b̃t is given by eq. (4). Thus the demand from the mutual fund

for long-term bonds is reduced-form. Demand of this form could additionally be derived
by adding another set of finite-lived, infinitely risk-averse investors as in the appendix of
Vayanos and Vila (2009). When studying QE, I assume that the demand shocks operate
through the preferred habitat investors. In this case, it may be useful to view this mutual
fund as a type of government sponsored entereprise.
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C.3 Rational Expectations Equilibrium

Assuming that all of the profits from the arbitrageurs and mutual funds are transfered
lump-sum to the households, the log-linearized solution is the same as a benchmark model
but with the effective rate r̃t in place of the short rate rt in the IS curve.

After linearizing around the steady state and imposing affine functional forms to the
term structure, the aggregate dynamics can be written in matrix form as in eq. (8). The
solution to the rational expectations equilibrium is found by following Buiter (1984), the
continuous time analogue of Blanchard and Kahn (1980). In general, let Yt = [yt xt]

T

where xt are the “jump” variables and yt are the state variables. Assuming that Υ is
diagonalizable, partition the eigenvalues and eigenvectors as follows:

Υ = QΛQ−1

Λ =

[
Λ1 0

0 Λ2

]
, Q =

[
Q11 Q12

Q21 Q22

]

where the partitions correspond to the state and jump variables. If the number of “stable”
eigenvalues (non-negative real parts) equals the number of state variables, then given some
transversality conditions the rational expectations equilibrium dynamics are given by eq.
(10), with

Γ = Q11Λ1Q
−1
11 (C10)

Ω = Q21Q
−1
11 (C11)

C.4 Conditional and Unconditional Distributions

The conditional distribution of the state variables yt given initial state y0 is normal:

yt|y0 ∼ N (µt,Σt)

The conditional mean is
µt = ySS + e−Γt(y0 − ySS)

The conditional variance-covariance is

Σt =

∫ t

0
eΓ(u−t)ΣeΓT (u−t) du

where again Σ = SST . Then this simplifies to

vec Σt =

(∫ T

0
e(Γ⊕Γ)(u−t) du

)
vec Σ

= (Γ⊕ Γ)−1
(
I− e−(Γ⊕Γ)t

)
vec Σ
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where ⊕ is the Kronecker sum. Taking the limit as t → ∞, the unconditional variance-
covariance is given by

vec Σ∞ = (Γ⊕ Γ)−1 vec Σ

and the present discounted value is computed as

Σ̃∞ ≡
∫ ∞

0
e−ρtΣt dt

vec Σ̃∞ = (Γ⊕ Γ)−1(ρI + Γ⊕ Γ)−1 vec Σ

Then from eq. (10), the conditional distribution of the jump variables xt given initial
state y0 (recall the initial values x0 are endogenous) is normal:

xt|y0 ∼ N
(
Ω(µt − ySS) + xSS ,Σx

t

)
and the equivalently defined covariances for the jump variables are easily computed as

Σx
t = ΩΣtΩ

T

Σx
∞ = ΩΣ∞ΩT

Σ̃
x

∞ = ΩΣ̃∞ΩT

Hence if xSS = 0, E0

[
xtx

T
t

]
= ΩΣtΩ

T .
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